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ABSTRACT 

 

INSIGHTS INTO TERMINAL ERYTHROPOIESIS INFLUENCED BY 

 HUMAN GENETIC VARIATION 

Elizabeth A. Traxler 

Dr. Mitchell Weiss 

 

Red blood cells (RBCs) carry hemoglobin, enabling delivery of oxygen to all 

tissues of the body. They are the products of a highly specialized differentiation process 

that begins with a hematopoietic stem cell and results in an enucleated, biconcave RBC. 

This thesis is focused on the use of human genetic studies to gain a better understanding 

of the molecular processes occurring during terminal erythroid differentiation. We 

studied the regulation and roles of two erythroid-restricted genes, Trim58 and 

Hemoglobin Gamma Chain (HBG1 and HBG2, γ-globin), by using a combination of loss-

of-function techniques, including RNA-interference-mediated gene suppression, a mutant 

mouse model, and CRISPR/Cas9 mediated genome editing. Previous genome-wide 

association studies implicated variation in TRIM58 in RBC development and function. 

Our experiments with Trim58 revealed a direct interaction with the molecular motor 

dynein and enzymatic function as an E3 ubiquitin ligase in promoting its proteasomal 

degradation. This interaction is necessary for enucleation in knockdown studies in vitro, 
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but genetic studies in the mouse show Trim58 is not required for erythropoiesis or 

enucleation.  In the second part of this thesis, we used CRISPR/Cas9 to recreate a known 

mutation associated with hereditary persistence of fetal hemoglobin, a benign condition 

that ameliorates co-inherited sickle cell disease (SCD). Genome editing in human 

hematopoietic stem and progenitor cells reversed the hemoglobin switch at levels 

sufficient in vitro to correct pathological morphologies in SCD patient-derived RBCs. We 

identify a cis-regulatory element in the γ-globin promoter as a potential target for 

genome-editing therapy for SCD. Together, these findings underscore the importance of 

utilizing both common and rare genetic variants to uncover new aspects of erythroid 

biology.  
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Preface 

 

This thesis is a series of chapters based on published and submitted manuscripts, and the 

results are organized and presented closely to how they were published. Each chapter 

begins with a statement explaining the motivating factors driving the studies, and closes 

with a brief reflective commentary. Chapter 6 contains more in-depth analysis on the 

work through a retrospective lens. 



www.manaraa.com

1 

Chapter 1 Introduction 

 

1.1 Red blood cell function 

Circulating red blood cells (RBC), or erythrocytes, deliver oxygen (O2) to all tissues 

of the body. Each mature cell is comprised of ~340 mg/mL hemoglobin (Hb), a heme-

containing metalloprotein complex accounting for over 90% of the cellular protein 

composition (Roux-Dalvai et al., 2008). Hb is a heterotetrameric complex of two α- and 

two β-like globin subunits or chains, which are each coordinated to a heme. Each heme 

coordinates an O2 molecule and allows efficient off-loading to deoxygenated tissues. 

While Hb is the universal O2 carrier, packaging high levels of Hb in the form of cells is 

advantageous for mammalian life in contrast to invertebrate O2 transport, which relies on 

via free, high-molecular-weight Hb. If vertebrates also lacked an efficient Hb packaging 

strategy, extremely high oncotic pressure would preclude a closed circulatory system.  

 

1.2 Erythropoiesis 

Erythropoiesis is developmentally divided into three waves, based on erythrocyte 

size, tissue of origin, and type of hemoglobin expressed. Two main functional 

requirements highlight the differences between embryonic and adult erythropoiesis. In 

the embryo, RBCs are required before long-term hematopoietic stem cell (HSC) 

populations and their environmental niches are established. Additionally, the rapid 

growth during embryogenesis demands dramatic red cell output (McGrath and Palis, 
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2008). In contrast, adult erythropoiesis normally remains at steady state in the absence of 

a hematopoietic stressor such as hemorrhage or hemolysis. The first wave, the primitive 

wave, begins in the yolk sac and yields RBCs expressing embryonic globin genes  (Palis 

et al., 1995; Silver and Palis, 1997). Until recently, these RBCs were assumed to remain 

nucleated, but both human and murine primitive erythroblasts enucleate in circulation 

(McGrath et al., 2008). The second wave consists of erythro-myeloid progenitors from 

the yolk sac, which can produce RBCs, platelets, and some myeloid lineages (Palis et al., 

1999; Wong et al., 1986). These progenitors ultimately migrate and seed the fetal liver 

mid-gestation for the third wave, definitive erythropoiesis (Lux et al., 2008; McGrath et 

al., 2015; 2011). Definitive erythropoiesis ultimately takes place in the bone marrow 

through adulthood, and cells are derived from HSCs. Human definitive RBCs initially 

express fetal hemoglobin (HbF, α2γ2) and post-natally express adult hemoglobin (HbA, 

α2β2).  

 

1.3 Terminal erythroid differentiation 

Definitive erythroid cells are derived from HSCs, which proliferate and 

differentiate into all blood lineages. The committed erythroid progenitors are burst-

forming unit erythroid (BFU-E) and colony-forming unit erythroid (CFU-E) cells, based 

on their capacity to form colonies in semi-solid media.  CFU-E committed progenitors 

then undergo 4-5 specialized cell divisions, wherein gene expression profiles and cell 

morphology change dramatically.   
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Figure 1.1. Terminal erythropoiesis.  

Morphological features of the characteristic progression from erythroid progenitors 

(BFU-E and CFU-E) to the enucleated reticulocyte and erythrocyte. Micrographs 

courtesy of James Palis, adapted from Max Pimkin.   

 

Gene expression changes 

Several groups have performed global transcriptome analysis at various stages of 

erythroid differentiation in primary cells (An et al., 2014; Liang et al., 2015; 

Merryweather-Clarke et al., 2011; Pishesha et al., 2014) and in erythroid cell lines 

(Pimkin et al., 2014; Stonestrom et al., 2015; Welch et al., 2004). A generalized 

repression of RNA production occurs during terminal erythroid differentiation, 

coinciding with the timing of hemoglobin synthesis. One such RNA-sequencing study of 

fluorescence-activated cell sorting (FACS)-enriched human erythroblast populations 

revealed 9,606 genes expressed in proerythroblasts, compared to 4,804 genes in 

orthochromatic erythroblasts (An et al., 2014). Of note, about 2,000 of these genes 

increased in expression over the course of erythroid differentiation. These changes in 
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gene expression are facilitated by alterations of the transcriptional network. GATA1 and 

TAL1 are “master” erythroid transcriptional factors that activate essentially all erythroid-

specific genes and silence those associated with a less mature, proliferative state. Genes 

that are most highly induced during maturation are those related to hemoglobin synthesis, 

structure, and function, including the globin genes, δ-aminolevulinate synthase 2 

(ALAS2), a hemoglobin stabilizing protein (AHSP), and transferrin receptor (CD71) (An 

et al., 2014).   

 

Cellular and nuclear morphological changes  

Visible morphological changes enable categorization of erythroid progenitors into 

the various stages – basophilic erythroblasts, polychromatic erythroblasts, orthochromatic 

erythroblasts, and finally the anucleated reticulocyte. Erythroblasts gradually decrease in 

cell size and incrementally demonstrate less basophilia with histologic staining, as 

hemoglobin (stains pink) production increases and ribosomes (stain blue) are eliminated.  

Nuclear condensation 

During erythroid differentiation and maturation, large nuclei are actively reduced 

into condensed, transcriptionally inactive nuclei about 1/10th of original volume. Efficient 

nuclear condensation is required for downstream enucleation (Hattangadi et al., 2014; 

Jayapal et al., 2010; Ji et al., 2010; Zhao et al., 2016). This process is mediated in part by 

epigenetic changes. Multiple studies highlighted the roles of histone deacetylation, 
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removal of acetyl groups from histone tails, which stabilizes chromatin and promotes 

heterochromatin formation. HDAC2 chemical inhibition or knockdown prevents 

chromatin condensation and larger nuclei in primary cells (Ji et al., 2010; Popova et al., 

2009). Concordantly, c-Myc downregulation of the histone acetyltransferase Gcn5 was 

necessary for nuclear condensation. Ectopic expression of either c-Myc or Gcn5 inhibited 

condensation and increased nuclear size (Jayapal et al., 2010). These factors function 

inside the nucleus and promote chromatin compaction.  

 In addition to processes inside the nucleus, recent studies suggest that histones 

and nuclear proteins are actively transported into the cytoplasm to aid nuclear 

condensation. Xpo7 (exportin-7) is induced during late erythropoiesis, and shRNA-

mediated, loss-of-function studies in fetal liver erythroblasts showed that Xpo7-deficient 

erythroblasts sustained larger nuclei, possibly due to retention of nuclear proteins within 

the nucleus (Hattangadi et al., 2014). Furthermore, Zhao et al. recently reported the 

presence of dynamic openings in the nuclear membrane, detected by discontinuous lamin 

B immunostaining during late erythropoiesis (Zhao et al., 2016). Inhibition of the 

openings by caspase-3 enzyme blockade or genetic disruption also resulted in increased 

nuclear size and prevented cytosolic histone release.  
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Enucleation 

Orthochromatic erythroblasts exit the cell cycle and undergo enucleation, where 

the condensed nucleus separates into an anucleated reticulocyte (Sankaran et al., 2008b). 

The expelled nucleus is surrounded by a lipid bilayer membrane, contains a thin 

cytoplasm, and is called a pyrenocyte (E and D, 1967; Simpson and Kling, 1967). A 

growing body of evidence parallels enucleation with an asymmetric cell division, as 

several structures similar to those crucial in mitosis have been identified in enucleating 

erythroblasts. Additionally, early electron microscopy demonstrated that enucleation does 

not involve exocytosis, as a thin layer of cytoplasm and plasma membrane surround the 

extruded nuclei (E and D, 1967; Simpson and Kling, 1967). The fate of the pyrenocyte is 

nearly immediate engulfment by macrophages in the bone marrow. The pyrenocyte 

membrane is highly enriched with phosphatidyl-serine, allowing direct recognition by the 

macrophage (Yoshida et al., 2005).  

The first morphological step of enucleation is polarization of the nucleus from a 

central to peripheral location in the cell. This process is largely mediated by 

microtubules. Treatment of late-stage erythroblasts with nocodozole or colchicine 

depolymerizes microtubules and leaves the nucleus in the middle of the cell 

(Konstantinidis et al., 2012). Exposure to taxol stabilizes microtubules and thickens the 

microtubule bundles surrounding the nucleus. Both destabilizing and stabilizing 

microtubules, however, inhibited enucleation (Konstantinidis et al., 2012).  While 

microtubules play a structural role in the physical movements of the nucleus, they also 



www.manaraa.com

7 

 

regulate local concentrations of secondary messengers to mediate polarization. 

Phosphoinositide 3-kinase (PI3K) is an important kinase which activates secondary 

messengers phosphatidyl-inositol(3,4)P2 (PIP2) and phosphatidyl-inositol(3,4,5)P3 (PIP3) 

in migrating cells, and was found to localize from the plasma membrane, directionally 

away from the centrosome after nuclear polarization occurred (Wang et al., 2012). 

Nuclear polarization was also reversed with the PI3K inhibitor, LY294002, and 

nocodozole treatment.  Together, these studies provided evidence that microtubules 

directly and indirectly stabilized the nucleus by the centrosome prior to the onset of 

enucleation.   

After the nucleus becomes polarized through microtubule-dependent processes, it 

is extruded away from the centrosome. At this point, the cell is no longer rounded and 

maintains a doublet morphology. Nuclear extrusion occurs through the formation of a 

contractile actin ring (CAR) and a cleavage furrow at the point between the incipient 

reticulocyte and pyrenocyte. Immunofluorescence experiments and time-lapse imaging of 

enucleating erythroblasts revealed a phalloidin-positive focus between this junction (Ji et 

al., 2008; Konstantinidis et al., 2012; ST and MC, 1989; Wang et al., 2012). Formation of 

the CAR is driven by actin polymerization and is required for enucleation, as the actin-

depolymerizing agent cytochalasin D effectively inhibited nuclear extrusion 

(Konstantinidis et al., 2012; Ubukawa et al., 2012). Similar to the progression of mitosis 

in other cells, the CAR is composed of actin filaments, and formation is driven by 

RacGTPases (Ji et al., 2008). The final separation of the pyrenocyte and reticulocyte 
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occurs through a telophase-like abscission event. Lipid raft-containing vesicles deliver 

membrane to the abscission point, mediated in part by clathrin. Knockdown or chemical 

inhibition of clathrin mildly inhibited enucleation of primary human erythroblasts in vitro 

(Keerthivasan et al., 2010).  

Pinpointing the functions of a protein that acts both during terminal cell divisions 

and enucleation can be limited because several events coordinated during enucleation 

utilize generalized cytokinetic machinery. These issues are potentiated by differences 

between in vitro primary cell culture systems and in vivo experimental mouse models. 

For example, mDia2 is a formin and nucleates unbranched actin filaments. Initial 

knockdown experiments in fetal liver erythroblast cultures suggested it specifically 

functions to pomote erythroid nuclear extrusion (Ji et al., 2008). However, Watanabe et 

al. showed that mDia2 function is highly intertwined with the prior cell divisions, as 

mDia2 knockout mice have increased multinucleated erythroid progenitors (Watanabe et 

al., 2013). Importantly, enucleation is the final step of erythroid development, and defects 

in numerous critical processes upstream can result in impaired enucleation.   

 

Cell cycle: regulation of RBC size and number  

Regulation of the cell cycle is intimately correlated with the cell number and size 

produced at the end of terminal differentiation. The earliest progenitors undergo 

specialized cell divisions producing two daughter cells, each smaller in size than the 
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parental cell. The G1 phase is shortened and S phase becomes progressively shorter, both 

allowing for decreased size after mitosis (Dolznig et al., 1995; Grebien et al., 2005). 

Cyclin D3 and cyclin A2 promote the G1/S and G2/M transitions of the cell cycle, 

respectively, and single nucleotide polymorphisms (SNPs) were identified by genome-

wide association studies (GWAS) to be associated with deviations in mean corpuscular 

volume and RBC count (cyclin D3) and cell size (cyclin A2) (Ganesh et al., 2009; 

Kamatani et al., 2010; van der Harst et al., 2012). Indeed, follow-up loss-of-function 

studies validated roles for these cyclins in erythroid maturation in primary murine 

erythroid culture systems (Ludwig et al., 2015; Sankaran et al., 2012). Erythroblasts 

expressing cyclin D3-targeting shRNAs displayed fewer cell divisions during the 

maturation process, resulting in larger and fewer resultant RBCs (Sankaran et al., 2012). 

Meanwhile, cyclin A2 knockdown in fetal liver erythroblasts inhibited cell size by 

regulating cytokinesis during the last cell division (Ludwig et al., 2015). In addition, 

these studies support the idea that successful production of functional erythrocytes is 

independent of abnormal cell size.  

Perturbation of the specialized divisions during erythroid maturation is an 

underlying cause of a rare condition called congenital dyserythropoietic anemia, wherein 

the pathological hallmark of the disease is multinucleated erythroblasts in the bone 

marrow. Causal mutations have been identified in CODANIN I (CDAN1) (Noy-Lotan et 

al., 2009; Renella et al., 2011), SEC23B (Schwarz et al., 2009), and most recently 

MKLP1 (KIF23) (Liljeholm et al., 2013). While all these genes are ubiquitously 
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expressed, the disease is largely erythroid-restricted, and studies of these mutations have 

expanded our understanding of the cell divisions during terminal erythropoiesis.  CDANI 

remains a poorly understood protein that may facilitate histone assembly into chromatin, 

and SEC23B encodes a protein involved in endoplasmic reticulum vesicle trafficking. 

Meanwhile, MKLP1 is a well-studied kinesin-like motor protein part of the 

centralspindlin complex, which organizes microtubules (Mishima et al., 2002), regulates 

formation of the CAR (Pavicic-Kaltenbrunner et al., 2007), connects the central spindle 

to the plasma membrane in preparation for abscission (Lekomtsev et al., 2012). How 

mutations in these three ubiquitously expressed proteins are responsible for an erythroid-

restricted disease is still unclear.  

 

1.4 The Ubiquitin-proteasome system (UPS) 

 The UPS facilitates selective elimination of proteins, including those that are 

irreversibly damaged, cytotoxic, or unnecessary. Three cooperating proteins coordinate 

the ATP-dependent ubiquitination of the target protein. An E1 enzyme activates the 76-

amino acid polypeptide ubiquitin and transfers it to an E2 ubiquitin-conjugating enzyme. 

E3 ubiquitin ligases mediate direct or indirect covalent linkage of ubiquitin monomers or 

chains to substrates (Hershko et al., 1983). After the first ubiquitin is attached, ubiquitin 

moieties are added to a lysine (K) reside of the previously attached ubiquitin: K6, K11, 

K27, K29, K33, K48, or K63). K48-linked polyubiquitination classically, but not 

exclusively, mediates recognition by the proteasome, a multi-subunit organelle that 
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includes numerous proteases (Thrower et al., 2000). However, it is now known that 

ubiquitin attachments are post-translational modifications serving innumerable functions, 

including cell cycle regulation, intracellular transport, cell signaling, and DNA repair 

(Erpapazoglou et al., 2012; Spence et al., 1995; Xu et al., 2009).  

While there are <10 E1 and ~40 E2 enzymes in cells, the diversity of E3 ubiquitin 

ligases is much greater; over 600 are expressed (Li et al., 2008). Each recognizes a 

limited repertoire of substrates and bestows specificity to the UPS.  E3 enzymes are 

categorized into two main families, depending on the presence of a HECT (Homologous 

to E6-AP Carboxyl Terminus) or a RING (Really Interesting New Gene) domain.  While 

HECT-containing enzymes carry activated ubiquitin and directly ligate the group to 

substrate, RING-containing enzymes act as scaffolds to bind the E2-ubiquitin enzyme 

and substrate to indirectly mediate ubiquitination (Deshaies and Joazeiro, 2009).  

 

The UPS in erythropoiesis 

The system was initially described in reticulocytes (Ciechanover et al., 2012; 

Etlinger and Goldberg, 1977; Wilkinson et al., 1980). Gene set enrichment analysis of the 

global transcriptome of differentiating human erythroblasts revealed that UPS 

components are highly enriched during late erythropoiesis (An et al., 2014; Egan et al., 

2015). In parallel, proteomics revealed that about 1/3 of known molecules of 

ubiquitination pathways exist in the human RBC (Roux-Dalvai et al., 2008). Evidence of 
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the broad role of the UPS in erythropoiesis also stems from the use of small molecule 

proteasome inhibitors. Studies using cultured erythroid cells demonstrated that exposure 

to various proteasome inhibitors can dramatically inhibit erythroid differentiation and 

maturation (Chen et al., 2002; Wölwer et al., 2015). A chemical screen on cultured, 

maturing erythroblasts identified three proteasome-inhibiting compounds that inhibited 

enucleation (Wölwer et al., 2015). One of these, bortezimib, is currently prescribed to 

treat multiple myeloma, and an observed side effect of its use is anemia (San Miguel et 

al., 2006). Despite having these clues, relatively few studies have elucidated substrates 

recognized and assigned functions to UPS components during red blood cell formation.  

 

Trim proteins  

The Trim protein family consists of more than 70 members, defined by a tripartite 

motif containing RING, B box, and coiled-coil (CC) domains (Marín, 2012). The 

canonical amino acid motif in RING domains is two repeats of Cys-X-His-X2-Cys-X2-

Cys, where X is any amino acid (Freemont et al., 1991). The conserved cysteine and 

histidine residues bind two atoms of zinc, maintain the overall protein structure, and form 

a cleft on the surface of the RING domain, which supports binding of the E2 protein 

(Deshaies and Joazeiro, 2009; Zheng et al., 2000).  

The CC domain enables Trim protein oligomerization. The crystal structures of 

the CC domains of TRIM5a, TRIM20, TRIM25, and TRIM69 all demonstrate that CC 
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domains form interdigitating antiparallel hairpins, thereby positioning the RING domain 

of one oligomer directly apposed with the C-terminal substrate-binding domain 

(Goldstone et al., 2014; Li et al., 2014; Sanchez et al., 2014; Weinert et al., 2015). 

Furthermore, several recent studies indicate that Trim protein multimerization is critical 

for efficient enzymatic activity. Full-length TRIM25 and TRIM32 proteins successfully 

formed dimers in solution and showed autoubiquitination activity, whereas truncated 

mutant proteins lacking the CC domains were attenuated in both in vitro assays 

(Koliopoulos et al., 2016; Streich et al., 2013). Catalytic activity of TRIM32 was partially 

rescued by fusion of the RING domain to glutathione-S-transferase domain, which is 

known to mediate dimerization (Streich et al., 2013).  

Trim proteins have variable C-terminal domains that commonly mediate protein 

interactions. More than half contain a C-terminal PRY-SPRY (Sp1a and Ryanodine 

Receptor) domain (Reymond et al., 2001; Versteeg et al., 2013)2.  Crystal structures of 

other PRY-SPRY domains reveal six hypervariable immunoglobulin-like loops that 

interact with substrate peptide (Biris et al., 2012; Woo et al., 2006) (D'Cruz et al., 2013)  

(James et al., 2007). Of note, mutations in the PRY-SPRY domain of TRIM20, or 

PYRIN, have been linked to an autoimmune disorder named Familial Mediterranean 

Fever (Grütter et al., 2006; Weinert et al., 2015; Woo et al., 2006).  
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1.5 β-globin gene regulation 

As discussed in Section 1.3.1, terminally differentiating and maturing 

erythroblasts utilize several mechanisms to dedicate a vast majority of cellular and 

transcriptional machinery to produce hemoglobin.  

Historically, scientists debated whether replacement of HbF by HbA was caused 

by a switch in stem cell lineage between fetal development and adulthood.  Does an RBC 

expressing HbF have a different origin than an RBC expressing HbA? A series of clonal 

analyses of primary erythroid progenitors revealed that erythroid colonies were 

comprised of distinct populations of cells expressing HbA and cells expressing HbF 

(Papayannopoulou et al., 1976; 1977). These studies not only indicated that adult and 

fetal erythroid cells indeed share a common stem cell lineage, but also supported a model 

where transcription network changes were responsible for hemoglobin switching. The 

molecular mysteries of this transcriptional switch have spurred intense basic research 

with the ultimate goal to discover new, targeted therapies for hemoglobinopathies.  

 

The β-like globin genes 

The five β-like globin genes lie on human chromosome 11 in the following order: 

5’-ε-Gγ-Aγ-δ-β-3’ (Figure 1.2). ε is expressed during embryogenesis, Gγ and Aγ are 

expressed during fetal development, and δ-globin and β-globin replace the fetal genes 

within 6 months after birth. Upstream of the β-globin genes lies a cluster of five 
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conserved DNase I hypersensitive sites (HSs), comprising the locus control region 

(LCR). The HSs function as erythroid-specific enhancers and mediate high-level 

induction of the β-like globin genes in maturing erythroid cells ((Forrester et al., 1986; 

Kollias et al., 1986; Tuan et al., 1985), reviewed in (Li et al., 2002)). The absence of the 

LCR dramatically reduces β-globin expression (Alami et al., 2000; Bender et al., 2000).  

Lying 20-60 kb upstream of the β-globin genes, the LCR remotely activates gene 

expression by chromosomal looping. When the embryonic genes are expressed during 

primitive erythropoiesis, the LCR interacts with the embryonic globin genes and not the 

adult globin genes. The LCR interactions with the gene promoters switch to temporally 

coordinate the expression of the different globins (Carter et al., 2002; Tolhuis et al., 

2002).  

 

Figure 1.2. Timing of 

the β-like globin gene 

switching during 

human development. 

The human 

embryonic, fetal, and 

adult globin chain relative expression levels are shown in blue, green, and red, 

respectively. From (Sankaran and Weiss, 2015). 
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Sickle cell disease 

Sickle cell disease (SCD) was the first “molecular disease” and is caused by a 

substitution of valine for glutamic acid, the 6th amino acid (D6V) (Pauling et al., 1949). 

The mutant protein is incorporated into hemoglobin tetramers, which polymerize under 

deoxygenating conditions and causes the RBCs to transform from a biconcave disk to a 

sickle shape (HerrickIrons, 1910). Vaso-occlusive events are precipitated when the cells 

enter smaller capillaries or the microvasculature and become deoxygenated, producing 

elongated cells that obscure blood flow to the tissue. These complications include stroke, 

pain, acute vascular necrosis, nephropathy, and ultimately premature mortality.  

 

Rationale for HbF-inducing therapies 

Studies of the interactions between HbS and other forms of hemoglobin has 

provided the rationale for new therapies (Behe and Englander, 1979; Sunshine et al., 

1979). When mixed with HbS, HbA and HbF both significantly delayed and decreased 

polymerization of HbS. However, HbF acts more potently. Compared to the 

polymerization time of pure HbS, mixtures with 30% HbA have delayed polymerization 

by 100-fold. However, when HbS is mixed with 30% HbF, polymerization is 104-fold 

slower. Therefore, the biochemical effects of having 30% HbF tetramers are more 

beneficial than observed the same ratio of HbA. In parallel, studying patients with sickle 
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cell disease and varied diseased progressions have supported similar conclusions that 

HbF expression alongside HbS is therapeutically beneficial. Baseline values of HbF 

amongst sickle patients is variable, ranging from <5% to >30%. In the Cooperative Study 

Sickle Cell Disease, HbF above 4% was associated with reduced painful crises (Platt et 

al., 1991). A slightly greater increase in HbF level above 8.6% was associated with 

decreased mortality (Platt et al., 1994). To date, this is the only known genetic modifier 

of sickle cell disease death.   

BCL11A 

Bcl11a is a zinc-finger transcription factor historically known for its role in 

lymphocyte and neural development. Because HbF expression and fraction of HbF+ cells 

(F-cells) are quantitative traits, the dawn of modern genomics has opened the doors of 

discovery. Genome-wide association studies elucidated the association between common 

variants in the BCL11A locus on chromosome 2 with fetal hemoglobin levels (Menzel et 

al., 2007; Uda et al., 2008). Knockdown of BCL11a in primary human erythroblasts cells 

showed that it is a negative regulator of γ-globin expression (Sankaran et al., 2008a), and 

erythroid-specific knockout mice inappropriately expressed γ-globin into adulthood (Xu 

et al., 2011). Furthermore, co-inheritance of Bcl11a null alleles rescued the disease 

manifestations of SCD in a humanized mouse model (Xu et al., 2011). Genetic studies 

have identified rare occurrences of large genomic deletions including the BCL11A gene. 

While these individuals have increased HbF expression, these deletions are also 

associated with neurocognitive and developmental disorders (Basak et al., 2015; Funnell 
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et al., 2015). Therefore, global or total-body inhibition of BCL11A by an ingested drug, 

for instance, may have adverse effects on the brain.  

More recently, Bauer et al. described an erythroid-specific enhancer of BCL11A 

(Bauer et al., 2013). They used previous GWAS data to fine-map a region of intron 2 in 

BCL11A. By matching the GWAS variants with DNase I hypersensitive sites found in 

erythroid cells (but not in other cell types), three HS regions (+55, +58, and +62 kb from 

the transcription start site) corresponded to SNPs linked to HbF variation. Deletion of the 

enhancer in cell lines left the exonic sequence intact, but loss of the enhancer reduced 

expression of BCL11A. The group further probed the 12-kb enhancer sequence to identify 

the minimal region necessary for enhancer function by performing a saturating 

CRISPR/Cas9 mutagenesis screen (Canver et al., 2015). Mutations induced by a single 

gRNA targeting the +58 HS site upregulated γ-globin to the same level as deletion of the 

entire enhancer. In parallel, Vierstra et al. screened eight zinc finger nuclease pairs 

targeting the enhancer and found that the pair targeting within 20 nt of +58 was the most 

effective at raising HbF expression (Vierstra et al., 2015). Both studies suggest that 

enhancer activity, BCL11A expression, and subsequent HbF repression are dependent on 

a single GATA1 motif at +58. The strong, safe effects of variation at this locus and target 

resolution have made this locus the prime candidate for therapeutic genome editing.  
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1.6 HPFH 

Individuals heterozygous or homozygous for mutations that cause HbF expression 

are asymptomatic. Usually identified incidentally by routine screening or because other 

family members have a hematologic disorder, rare individuals have mutations in the β-

globin gene cluster that cause hereditary persistence of fetal hemoglobin (HPFH). These 

individuals have normal hemoglobin concentrations.  

 Several different models are currently thought to explain mechanisms of HbF 

induction seen with HPFH. 1) Enhancer sequences are brought closer to HBG1 and 

HBG2 (Forget, 1998); 2) removal of HBB and HBD eliminate competition with the LCR 

(Akinsheye et al., 2011); and 3) regulatory sequences that play a role in γ-globin gene 

repression are altered or created de novo (Wienert et al., 2015). 

 

Deletional HPFH 

Several deletions in the β-globin gene cluster result in HPFH. Heterozygotes have 

reported greater than 30% HbF in a pancellular distribution, where all RBCs express 

HbF. Homozygotes are clinically healthy but may have mild microcytosis (smaller 

RBCs) and/or hypochromia (less hemoglobinization). The α-globin to γ-globin chain 

synthesis can be mildly imbalanced, suggesting that γ-globin synthesis occurs at a lower 

rate than the normal β-globin gene does. A schematic of the known deletions is shown in 

Figure 1.2 (drawn based on references (Feingold and Forget, 1989; Henthorn et al., 1990; 
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Huisman et al., 1971; Jagadeeswaran et al., 1982; Joly et al., 2009; Sankaran et al., 

2011)). HPFH-1 and HPFH-2 mutations are the most common and are large deletions 

(>84 kb in length) and often encompass the HBB gene itself (Feingold and Forget, 1989). 

These mutations genetically resemble and even overlap with those responsible for δβ-

thalassemia. However, the mapping of these breakpoints highlighted a 3.5-kb region 

within the β-globin gene cluster that is critical for γ-globin silencing (Sankaran et al., 

2011).  

 

 

 

Figure 1.3. Map of known HPFH deletions in the β-globin gene cluster on 

chromosome 11.  

Vertical arrows indicate the HS sites of the LCR, boxes show the β-like genes, and 

horizontal arrows denote the span of the deletions. Elements are drawn to scale.  
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13-nucleotide HPFH deletion 

 Huisman et al. reported the smallest known HPFH deletion: a 13-nucleotide (nt) 

mutation in the HBG1 promoter, 102 through 114 nt upstream of the transcriptional start 

site (-102 to -114) (Gilman et al., 1988). The mutation was identified in two related 

individuals with sickle cell trait and HbF levels of 31.8% and 30.1%. Aγ, encoded by 

HBG1, represented over 80% of the γ-globin chains, suggesting that the mutation in the 

promoter was responsible for the specific upregulation of Aγ−globin. Of note, three 

additional point mutations lie in the same region, including a G-to-A change at -117 (-

117G>A, 10-20% HbF) (Berry et al., 1992; Collins et al., 1985), a C-to-T change at -114 

(-114C>T, 11-14% HbF) (Fucharoen et al., 1990), and a G-to-T change at -109 (-

109G>T, 4.1% HbF) (Chassanidis et al., 2009). Transgenic mouse experiments served to 

validate that these mutations were responsible for HPFH phenotypes. While a transgenic 

mouse model is lacking for the 13-nt deletion, Ronchi et al. demonstrated that the -114 

and -117 point mutations indeed induced γ-globin expression both in fetal liver and 

peripheral blood of adult animals (Ronchi et al., 1996). This study also highlighted the 

necessity for intact proximal elements upstream of -114. The γ-globin promoter 

mutations provided the backbone for in vivo structure-function mapping and suggested 

that these nucleotides are specifically important for hemoglobin switching.  
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Chapter 2 Experimental Methods 

Trim58 cloning  

The full-length Trim58 gene, including 5’ and 3’ untranslated regions (UTR), was 

initially TOPO cloned into pCRII-Dual vector (Invitrogen) from murine fetal liver 

erythroblast cDNA using the following primers (Forward: 

GCCATGGCCACGGCACCCGGGG, Reverse: CAGCACTTCTGGATGGGTTT). Full 

length (wild type) Trim58 was subcloned from pCRII-Dual-Trim58 into retroviral vectors 

using the following primers to create 5’ FLAG/HA epitope-tagged constructs (Forward: 

GAAGATCTAGATCTGCCATGGACTACAAGGACGACGATGACAAATACCCATA

CGACGTCCCAGACTACGCTGCCTCAGCTCCTTCTGTG, Reverse: 

CGGAATTCCAGCACTTCTGGATGGGT). The RING-dead Trim58 construct, 

containing Cys>Ala missense mutations at residues 55 and 58 (within the RING domain), 

was created from a full length Trim58 construct using a two-step PCR method using the 

above full length Trim58 Forward and Reverse primers and the following mutation-

generating primers (Forward: GGACCCCTGGCCTGGGGTGCGGCGTAGAC, 

Reverse: GTCTACGCCGCACCCCAGGCCAGGGGTCC). The Trim58 PRY-SPRY 

domain, including residues 281-485, was subcloned from a full length Trim58 construct 

using the following primers (Forward: 

AGAAGATCTAGATCTGCCATGAGGGAGATG, Reverse: 

CGGAATTCCAGCACTTCTGGATGGGT). This construct begins 8 amino acids 

upstream and extends 25 amino acids downstream of the predicted PRY-SPRY domain. 
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Live cell imaging plasmids were cloned into the BglII/EcoRI site of a pK1 vector 

containing amino-terminal FLAG and carboxy-terminal mCherry tags (S. Kadauke & G. 

Blobel, Children’s Hospital of Philadelphia) using the following primers (Forward: 

GAAGATCTAGATCTATGGCCACGGCACCCG, Reverse: 

CCGGAATTCGAATTCGTATTCCTCACTTCTGGCAG). Trim58 ΔCC expressed in 

E14.5 fetal liver cells as isolated by PCR from a murine fetal liver erythroblast cDNA 

library. 

Trim58 constructs were cloned into the BamHI/EcoRI or BglII/EcoRI sites in 

several expression vectors for this study, including pCRII-Dual (Invitrogen), retroviral 

MIGR1 (Murine Stem Cell Virus (MSCV) promoter-driven construct with downstream 

IRES-GFP), retroviral pK1 (MSCV-driven construct with downstream IRES-puromycin), 

and pGEX6P1 (GE Healthcare) for GST-tagged constructs. 

Radioactive in situ hybridization  

Embryonic day 14.5 (E14.5) murine embryos were fixed, dehydrated, paraffin-embedded, 

sectioned, and stained with an antisense probe targeting Trim58 nucleotides 841-1455 per 

protocols from the University of Pennsylvania Molecular Cardiology Research Center 

Histology and Gene Expression Core Facility. 

Flow cytometry 

For fluorescence activated cell sorting of primary murine fetal liver erythroblasts, 

single cell suspensions from whole fetal livers were stained with Ter119-APC 
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(BioLegend) and CD71-PE (BD Pharmingen) for 45 min at 4 °C in PBS and sorted on a 

FACSAria instrument (BD Biosciences) per a previously described gating strategy (Pop 

et al., 2010). 

For cultured murine fetal liver erythroblast analysis, 5x105 cells were stained 

sequentially with 5 µM Hoescht33342 (Sigma) for 1 hr at 37 °C in fetal liver maturation 

medium, Live/Dead near-IR fixable dead cell stain (Invitrogen) for 30 min at 4 °C in 

PBS, and Ter119-PerCP-Cy5.5 and CD44-AF647 (BioLegend) for 45 min at 4 °C in PBS 

with 2% fetal bovine serum (FBS). Cells were analyzed on an LSR Fortessa instrument 

(BD Biosciences) maintained by the Flow Cytometry Core Laboratory of The Children’s 

Hospital of Philadelphia Research Institute. Data were analyzed using FlowJo software 

(TreeStar).  

Quantitative real-time PCR  

RNA was extracted using the RNeasy kit (Qiagen) with on-column DNAse 

treatment. cDNA was prepared using the iScript cDNA kit (BioRad). Semiquantitative 

real-time PCR was done using the standard curve method and SYBR green dye on a ViiA 

7 real-time PCR system (Life Technologies). Real time primers used in this study probed 

for murine Trim58 (Trim58; Forward: GAGCGTCTTTGGAACTTGTG, Reverse: 

ACCCTCTGTGTTTCTCAAACTC), dynein heavy chain (Dync1h1; Forward: 

TTGTACCGCATCCAAGAGAAG, Reverse: GTTGTAGTCATTCACCGTTTCC), 

dynein intermediate chain (Dync1i2, Forward: ACAGTCAAAGGCAGTAGCTG, 
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Reverse: CTGGTGTCCCTCAAACATCTC), actin (Actb; Forward: 

CCTTCCTTCTTGGGTATGGAATC, Reverse: AGCACTGTGTTGGCATAGAGGT), 

hypoxanthine guanine phosphoribosyl transferase (Hprt; Forward: 

TCAGTCAACGGGGGACATAAA, Reverse: GGGGCTGTACTGCTTAACCAG), and 

glyceraldehyde-3-phosphate dehydrogenase (Gapdh, Forward: 

AGGTTGTCTCCTGCGACTTCA, Reverse: CCAGGAAATGAGCTTGACAAA). 

Target gene expression was normalized to the average of Actb, Gapdh, and Hprt values. 

HBG1/2 and HBB mRNAs were quantified by SYBRGreen qPCR, as described (Deng et 

al., 2014). 

In silico analyses of Trim58 gene regulation and expression 

ChIP-Seq data at the murine Trim58 locus were obtained from the Penn State 

University Bioinformatics Genome Browser (https://mery.genome-

browser.bx.psu.edu/). The data presented in Figures 3.2C and 3.23 were generated 

from primary fetal liver erythroblasts by ChIP-Sequencing and RNA-Sequencing, 

respectively (Pimkin et al, in revision). Human TRIM58 mRNA tissue expression 

patterns were obtained from publicly available microarray data (Figures 3.1A (Wu et al., 

2009) and 3.1B (Novershtern et al., 2011)). Erythroid TRIM58 expression data were 

obtained from microarray analysis of FACS-purified human erythroblasts cultured from 

peripheral blood buffy coat mononucleocytes (Figure 3.1C (Merryweather-Clarke et al., 

2011)). 
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Murine fetal liver erythroblast isolation 

E14.5 murine fetal livers were harvested from pregnant CD1 mice (Charles River 

Laboratories), triturated, and passed through a cell strainer (BD Biosciences) to yield 

stroma-free single cell suspensions. Erythroid progenitors were purified by negative 

selection on magnetic beads using the EasySep Mouse Hematopoietic Progenitor Cell 

Enrichment Kit (STEMCELL Technologies) according to the manufacturer’s 

instructions, with the addition of biotin-conjugated anti-mCD71 (eBioscience).  

Short hairpin RNA cloning 

Short hairpin RNAs from pGIPZ vectors (Open Biosystems) were subcloned into 

the “PIG” (MSCV-Puromycin-IRES-GFP) retroviral vector (Hemann et al., 2003). These 

shRNA constructs are within a miR30 stem-loop structure to aid processing. Primers 

(Forward: AGATCTAGATCTTGCTGTTGACAGTGAGCG, Reverse: 

CTCGAGCTCGAGTCCGAGGCAGTAGGC) were used to clone the following shRNAs 

into the MSCV-PIG vector BglII and XhoI sites. The sense strand is indicated in red, 

antisense in blue, loop in green, and the common miR-30 context in black. 

shLuciferase (RHS1705) 
TGCTGTTGACAGTGAGCGCCCGCCTGAAGTCTCTGATTAATAGTGAAGCCAC
AGATGTATTAATCAGAGACTTCAGGCGGTTGCCTACTGCCTCGGA  

shScrambled (RHS4346) 

TGCTGTTGACAGTGAGCGATCTCGCTTGGGCGAGAGTAAGTAGTGAAGCCAC
AGATGTACTTACTCTCGCCCAAGCGAGAGTGCCTACTGCCTCGGA 

shTrim58 #3 (V3LMM_487333) 
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TGCTGTTGACAGTGAGCGACCGAGACTCAGTGCTGAGAAATAGTGAAGCCAC
AGATGTATTTCTCAGCACTGAGTCTCGGCTGCCTACTGCCTCGGA 

shTrim58 #4 (V3LMM_487334) 

TGCTGTTGACAGTGAGCGCCTCCTTCTACAATGTCACAAATAGTGAAGCCAC
AGATGTATTTGTGACATTGTAGAAGGAGATGCCTACTGCCTCGGA 

shTrim58 #5 (V3LMM_487335) 

TGCTGTTGACAGTGAGCGCTTGGACTACGAAGCTGGTGAATAGTGAAGCCAC
AGATGTATTCACCAGCTTCGTAGTCCAAATGCCTACTGCCTCGGA 

shTrim58 #7 (V3LMM_487337) 

TGCTGTTGACAGTGAGCGCCGGGATCTTTTTGGACTACGATAGTGAAGCCAC
AGATGTATCGTAGTCCAAAAAGATCCCGATGCCTACTGCCTCGGA 

Retroviral infection  

Retroviral PIG constructs were packaged by co-transfection of pCL-Eco into 293T 

cells via calcium phosphate transfection. To create retrovirus for human (HeLa) cell 

infection, constructs were packaged by co-transfection of pVSVG and pCPG into 293T 

cells. Retroviral supernatants were collected 24 and 48 hr post-transfection and kept at -

80 oC until use. Cells were infected with retroviral supernatant containing 8 µg/mL 

polybrene (Sigma) and 10 mM Hepes (Gibco) by centrifugation at 2800 rpm for 90 min 

at 30 °C. 

Fetal livery erythroblast culture conditions 

Our methods were based on those initially devised by Zhang et al (Zhang et al., 2003) 

with some modifications. Erythroid progenitors were “expanded” for 24-72 hrs in 

StemPro-34 serum free media (Gibco) containing 10% SP34 supplement, 2 mM L-
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glutamine (Gibco), 1% Penicillin/Streptomycin (Gibco), 0.1 mM 1-thioglycerol (Sigma), 

1 µM dexamethasone (Sigma), 0.5 Units/mL Erythropoietin (Amgen), and 1% mSCF-

conditioned medium. At 18-24 hrs post-infection, puromycin (1 µg/mL) was added to 

select for infected cells. Following expansion, cells were pelleted at 800 rpm for 3 min, 

washed thrice in PBS, and cultured in fetal liver maturation medium (IMDM 

(Mediatech/Cellgro), 10% BenchMark fetal bovine serum (Gemini Bioproducts), 10% 

plasma derived serum (Animal Technologies), 5% Protein Free Hybridoma Media II 

(Gibco), 2 mM L-glutamine (Gibco), 1% Pen/Strep (Gibco), 0.1 mM 1-thioglycerol 

(Sigma), and 2 Units/mL Erythropoietin (Amgen)) for up to 48 hrs. After 48 hrs, 

maturation was complete, cultures began to die, and analyses became unreliable. 

Expansion and maturation cultures were kept below 1 million cells per mL at all times. 

Erythroblast morphology analysis 

Cells were centrifuged onto a glass slide and stained with May Grünwald-Giemsa 

(Sigma). Light microscopy images were obtained with a Zeiss Axioskope 2 microscope, 

Zeiss Axiocam camera, and Zeiss AxioVision 3.1 software (Carl Zeiss Microimaging) at 

room temperature. Multinuclearity was assessed by visual inspection of May Grünwald-

Giemsa-stained slides. The “Analyze Particles” feature within FIJI was used to quantify 

nuclear sizes from slide images. 

Western blot analysis 
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Sample loading was normalized to protein content. Proteins were resolved on Tris-

Glycine gels (BioRad), transferred to 0.45 µm PVDF (Whatman) or Nitrocellulose 

membrane (BioRad), and blocked in 5% milk. Primary antibodies included Dynein 

Heavy Chain (R-325, Santa Cruz), Dynein Intermediate Chain (MAB #1618, Millipore), 

Nup153 (QE5, Abcam), Gapdh (FL-335, Santa Cruz), α-globin (custom rabbit 

polyclonal, Covance), Hemagglutinin (Y-11, Santa Cruz), FLAG (M2, Sigma), Codanin1 

(G-1, Santa Cruz), and β actin-HRP (Sigma). Anti-Trim58 antibodies were raised against 

a peptide from the N-terminus (ERLQEEARCSVCLDFLQEPISVD) of murine Trim58 

(Thermo Scientific). HRP-conjugated anti-mouse and anti-rabbit secondary antibodies, 

protein size markers, and other reagents were from Thermo Scientific.  

Hemoglobin content quantification 

Hemoglobin content in mature erythroblast cultures was quantified by Drabkin’s 

assay as described (Campbell et al., 2013). Culture pellets were imaged in 1.1 mL FACS 

tubes (VWR) with an iPhone 4. 

Immunoprecipitation assays 

For all immunoprecipitation (IP) experiments, cells were lysed in buffer 

containing 10 mM Tris (pH 7.4), 150 mM sodium chloride, 0.5% NP-40 (Sigma), 1 mM 

EDTA (pH 8.0), 10 µM proteasome inhibitor (MG132, Enzo), and 1:500 protease 

inhibitor cocktail (Sigma). For FLAG- PS immunoprecipitation, 400 million FACS-

purified GFP+ G1E cells, cultured as described (Weiss et al., 1997), were lysed, 
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precleared with a 1:1 mix of Protein A and rProtein G agarose (Invitrogen), and 

incubated overnight with EZView Red Anti-Flag M2 Affinity Gel (Sigma) at 4 oC. After 

washing thrice with IP buffer, immunoprecipitated material was eluted off of beads with 

100 µg/mL 3X FLAG peptide (Sigma) at 4 °C for 1 hr with intermittent agitation and 

used for further analyses. 

For DIC immunoprecipitation, precleared lysate from 15 freshly isolated whole E14.5 

murine fetal livers (~300 million cells) were incubated with anti-DIC antibody (Millipore 

MAB #1618) overnight. rProtein G agarose beads (Invitrogen) were then added for 4 hrs 

at 4 °C. Beads containing immunoprecipitated material were washed thrice in IP buffer, 

boiled in 2X Laemmli Sample Buffer (Sigma), and analyzed immediately.   

Mass spectrometry 

Immunoprecipitates were size-fractionated by SDS-PAGE (4-15% gradient gel, 

BioRad) and stained with Coomassie Blue Silver overnight. Following washing in 

deionized water, the indicated bands were manually extracted, digested with trypsin, and 

subjected to liquid chromatography and nanospray/linear trap quadrupole mass 

spectrometry using a ThermoFinnigan LTQ linear ion trap mass spectrometer at the 

University of Pennsylvania Proteomics Core Facility. Data were analyzed via Sequest 

and Scaffold3 software packages. Presented data represent unweighted spectral counts, 

unique peptide counts, and percent protein coverage for proteins identified by ≥2 peptides 

with >99% protein/>95% peptide confidence. 
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In vitro GST pull down assays 

For the in vitro binding experiments shown in Figures 3.10A and 3.10B, GST and 

GST-PS proteins were prepared in previously described conditions (Kihm et al., 2002). E. 

coli BL21 cells were grown at 37 °C for 3 hrs and induced to express protein by addition 

of 0.1 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG) for 3 hrs at 30 °C. Cell pellets 

were resuspended in BC500 buffer (10 mM Tris-HCl (pH 8.0), 500 mM KCl, 20% 

glycerol, 1% NP-40, 0.5 mM EDTA, 1 mM DTT, 0.5 mg/mL lysozyme, 0.05 mg/mL 

DNAse I, and protease inhibitor cocktail (Sigma)) and sonicated. Lysates were clarified 

by centrifugation at 10,000 rpm for 10 min at 4 °C. Cleared lysates were incubated with 

washed glutathione-Sepharose beads (GE Health Sciences) overnight at 4 °C, washed 

thrice in BC500, and eluted off of beads with 20 mM reduced glutathione solution 

containing 50 mM Tris-HCl (pH 8.8), 100 mM NaCl, 1 mM DTT, and protease inhibitor 

cocktail (Sigma).   

Bovine brain holodynein was purified as described (Bingham et al., 1998). pCMV-

based HA-tagged portions of human dynein intermediate chain (generously donated by 

K. Kevin Pfister, University of Virginia) were introduced into 293T cells by calcium 

phosphate transfection. Transfected 293T cells expressing HA-tagged DIC constructs 

were lysed in pull down (PD) Buffer (20 mM Tris pH 7.4, 150 mM potassium chloride, 1 

mg/mL BSA, 1:500 protease inhibitor cocktail (Sigma)) 24 hrs after transfection.  
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For pull down assays, recombinant GST or GST-PS (1 µmol at 4 mM final 

concentration) was incubated with substrate (5 µg holodynein (~4 fmol at 16 nM final 

concentration) or 400 µg 293T lysate containing DIC truncation) and 20 µL glutathione-

Sepharose beads (GE Healthcare) in PD Buffer for 2 hrs at 4 °C with rotation. All pipette 

tips and Eppendorf tubes were passivized with 1 mg/mL bovine serum albumin (Sigma) 

prior to use. Beads were subsequently pelleted, washed thrice with PD Buffer, boiled in 

2X Laemmli Sample Buffer (Sigma), and analyzed. 

SEC-MALLS experiments  

Our collaborators, Drs. Joel Mackay and Ana Silva, of the School of Molecular 

Bioscience at the University of Sydney, Australia, conducted these experiments. Trim58 

PS (residues 281-485) and dynein intermediate chain (residues 1-120) were expressed 

separately in E. coli Rosetta 2 (DE3) cells at 25 °C for 16 hrs. Cell pellets were 

resuspended in 50 mM sodium phosphate (pH 7.5) and 0.5 M sodium chloride for GST-

PS, or 50 mM CHES pH 10 and 1 M sodium chloride for GST-DIC(1-120). Cells were 

lysed by sonication following the addition of 1 mg/mL lysozyme, 1 mM DTT, 1 mM 

PMSF, 0.05 mg/mL DNAse I, 0.05 mg/mL RNAse A and Complete EDTA-free protease 

inhibitors (Roche). Cell lysates were incubated with glutathione-Sepharose resin 

(Novagen) for 1 hr at 4 °C and washed. GST-DIC(1-120) was eluted using 30 mM 

glutathione, whereas PS was cleaved from the GST tag with HRV-3C protease overnight 

at 4 °C. Both proteins were then purified by size exclusion chromatography, using a 

Superdex 75 HiLoad 16/600 column. PS was eluted in 20 mM sodium phosphate (pH 
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7.5) and 50 mM sodium chloride, and GST-DIC(1-120) in 20 mM CHES pH 10 and 100 

mM sodium chloride.  

Purified PS (200 µL at 3.3 µM) and GST-DIC(1-120) (200 µL at 16.4 µM) were 

run separately on a Superdex 200 10/300 GL column connected to a MiniDawn Treos 

(Wyatt Technology). A mixture of PS and GST-DIC (200 µL of a mixture of PS at 13.2 

µM and GST-DIC at 16.4 µM) was incubated for 1 hr at room temperature and then 

eluted on the same SEC-MALLS setup. All samples were eluted in 20 mM Tris pH 8 and 

100 mM sodium chloride at 0.5 mL/min. Molecular masses were calculated using a dn/dc 

value of 0.185 mL/g. 

Immunofluorescence assay sample preparation 

HeLa cells were transiently transfected on 12 mm coverslips (VWR) with pK1-

based Trim58 constructs or pEGFP-based mCherry-CC1 (human), using Lipofectamine 

2000 reagent (Invitrogen) per the manufacturer’s instructions. After 36 hrs, cells were 

fixed in 4% paraformaldehyde for 5 min, permeabilized in 0.1% Triton-X 100 for 5 min, 

and blocked in PBS containing 3% FBS for 1 hr at room temperature. Transfected HeLa 

cells were stained with GM130 (BD Biosciences) overnight at 4 °C, and then with goat 

anti-mouse Alexa Fluor 488 (Invitrogen) for 1 hr at room temperature. Cells were 

mounted on glass slides with Prolong Gold Antifade Reagent with DAPI (Invitrogen).  

For erythroblast immunofluorescence assays, cells were layered onto glass slides 

previously treated with Vectabond reagent (Vector Laboratories) and incubated for 10 
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min at 37 °C. Erythroblasts were fixed and permeabilized as described above, stained 

with Alexa Fluor 488-conjugated anti-aTubulin (Millipore) overnight at 4 °C, and 

mounted. 

Time lapse microscopy 

HeLa cell lines were plated on a FluoroDish (World Precision Instruments, 0.17 mm-

thick glass bottom) in DMEM (Gibco) containing 10% FBS and 1% sodium pyruvate at a 

concentration of 250,000-500,000 cells per mL. Beginning 24-36 hrs later, cells were 

imaged at 5 min intervals for 12 hrs in an environmental chamber at 37 °C and 5% 

carbon dioxide. Time lapse and static erythroblast imaging were performed on an 

Olympus IX70 inverted microscope with a Photometrics CoolSnap HQ high-resolution 

CCD camera. Images were acquired and processed using Deltavision Softworx software. 

Static HeLa cell imaging was performed on a Zeiss LSM 710 Confocal microscope with 

ZEN 2011 acquisition software. The University of Pennsylvania Perelman School of 

Medicine Cell and Developmental Biology Microscopy Core maintained these 

microscopes. Images were analyzed using FIJI (Schindelin et al., 2012) and Volocity 

Software (PerkinElmer). 

Animals 

An 18.8-kb region including part of the murine Trim58 gene locus was retrieved 

from Bacterial Artificial Chromosome (BAC) bMQ116f01 (Children’s Hospital Oakland 

Research Institute, CHORI) and subsequently cloned into recombineering vectors using 
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materials obtained from the National Cancer Institute Biological Resources Branch. 

Artificial loxP sites were inserted to flank exon 3, and Cre recombinase was transiently 

expressed in E.coli to excise exon 3. This purified construct constituted the Trim58 exon 

3 deletion targeting cassette. The Trim58 gene was disrupted in Sv129 embryonic stem 

(ES) cells by transient expression of the targeting cassette and subsequent recombination 

into the intact genomic locus. ES cells were analyzed via Southern blot for the expected 

pattern after StuI restriction enzyme digestion. A single ES cell clone was injected into 

FVB murine blastocysts, and chimeric offspring were crossed with FVB mice. A PCR-

based strategy was used to genotype these mice for Trim58. The mice used to generate 

data in this study were subsequently backcrossed at least 4 generations on a C57Bl/6 

background for additional analysis. The Children’s Hospital of Philadelphia and St. Jude 

Children’s Research Hospital Institutional Animal Care and Use Committees approved 

all animal protocols. 

Peripheral blood and tissue analysis 

Peripheral blood was collected in EDTA-coated tubes via retro-orbital sinus or 

tail vein. Complete blood counts were determined using the Hemavet 950 (Drew 

Scientific). For phlebotomy studies, 200 µL of blood were collected on days 0 and 2, and 

fluid volume was replaced with intraperitoneal injection of sterile saline. For peripheral 

blood analysis of entire blood volume, cardiac puncture was performed under anesthesia. 

Blood was washed once with PBS, and layered onto a Percoll/NaCl density gradient 

(1.096-1.058 g/mL) and centrifuged at 250g for 30 min. Purified reticulocytes 
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populations were validated by flow cytometry using thiazole orange Retic-Count stain 

(BD).  

For phenylhydrazine treatment, 50mg/kg 1-acetyl-2-phenylhydrazine (Sigma) was 

injected intraperitoneally on two consecutive days. Serial hematocrit levels were 

determined by standard methods after removing 20 µL of blood from the tail.  

Purification of Ter119+ erythroid cells 

Fetal liver and bone marrow erythroblasts were purified by magnetic sorting using 

the STEM CELL reagents for PE positive selection with Ter119-PE antibody.  

Effect sizes of mouse and human TRIM58 alleles 

We used the student t-test to calculate the effect sizes of RBC number and MCV 

in Trim58-/- versus Trim58+/+ mice. We used beta values (β) from GWAS-reported 

variants associated with the same traits to determine the effect sizes (rs38111444 for 

RBC number and rs11204538 for MCV)(Kamatani et al., 2010; van der Harst et al., 

2012). Beta values (β) were converted to Cohen’s D effect sizes using the following 

formula: Cohen’s D = β/sd(β), where sd(β) = sqrt(N/se(β)).  

 

gRNAs and Constructs 

gRNA-1: GCTTGTCAAGGCTATTGGTCA 
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gRNA-2: GTGTCAAGGCTATTGGTCAAG 

 

gRNA sequences were selected using a CRISPR design tool 

(www.crispr.mit.edu), generated as oligonucleotides, and cloned into plasmids using 

BbsI. The all-in-one expression plasmid spCas9(BB)-2A-GFP (PX458) was a gift from 

Feng Zhang (Addgene plasmid #48138). AIO-mCherry vector was cloned by replacing 

T2A-GFP with IRES-mCherry. The lentiCRISPRv2 was a gift from Feng Zhang 

(Addgene plasmid #52961). Lentiviral CRISPR-GFP and –mCherry plasmids used in this 

study were generated by replacing the puromycin resistance gene with IRES-GFP or 

IRES-mCherry.  

Erythroid differentiation of human peripheral blood CD34+ cells 

Circulating G-CSF-mobilized human CD34+ cells were obtained from two 

deidentified healthy donors (Key Biologics, Lifeblood) and enriched by immunomagnetic 

bead selection using an AutoMACS instrument (Miltenyi Biotec).  

CD34+ cells were cultured in a three-phase erythroid differentiation protocol 

consisting of IMDM (Gibco) supplemented with 2% human AB plasma, 3% human AB 

serum, 1% penicillin/streptomycin, 3 units/mL heparin, 10 µg/mL insulin, and 3 units/mL 

erythropoietin (EPO) (Amgen). Phase I (days 1-7) also included 200 µg/mL Holo-

Transferrin (Sigma-Aldrich), 10 ng/mL stem cell factor (SCF) (PeproTech, Inc.) and 1 

ng/mL IL-3 (PeproTech, Inc.). Phase II (days 8-12) included the same cytokines, except 
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that IL-3 was withdrawn. During phase III (days 13 and beyond) Holo-Transferrin was 

increased to 1 mg/mL, and SCF was removed. Erythroid differentiation and maturation 

were monitored by flow cytometry using anti-CD71-PE (BD Biosciences, clone M-

A712), anti-CD235-FITC (BD Biosciences, clone GA-R2), anti-Band3-APC (gift from 

Xiuli An, NY Blood Center), anti-α4-integrin-VioBlue (Miltenyi, clone MZ18-24A9).  

HUDEP Cell culture 

HUDEP clone 2 (HUDEP-2) cells were cultured as previously described. Cells 

were expanded in StemSpan SFEM (Stem Cell Technologies) supplemented with 1 µM 

dexamethasone, 1 µg/mL doxycycline, 50 ng/mL human SCF, 3 units/mL EPO, and 1% 

penicillin/streptomycin. HUDEP-2 cells were differentiated in the Phase III medium used 

for CD34+ erythroid cultures. These cells tested negative for mycoplasma.   

Generation of genomic deletions 

CD34+ cells were transduced by centrifuging with lentivirus (multiplicity of 

infection 40) at 2,800 rpm, 37°C for 90 min with 8 µg/mL polybrene in Phase I erythroid 

differentiation medium (CD34+) cells or HUDEP-2 expansion medium (for HUDEP-2 

cells). The cells were incubated overnight with virus and were switched to fresh medium 

the following morning. For transient editing, the Amaxa 2b (Lonza; program U-008) was 

used to electroporate 1-5 million CD34+ or HUDEP-2 cells with DNA plasmid containing 

gRNA, Cas9, and GFP (2 or 10 µg).  
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To generate edited HUDEP-2 clones, cells were electroporated with 10 µg DNA 

plasmid encoding gRNA-1, Cas9, and GFP. Single GFP+ cells were then sorted into 96-

well plates after 24 hours and expanded for 14-21 days. Genomic DNA was isolated 

using a DNA extraction buffer (100 mM Tris HCl, pH 8.3; 200 mM NaCl; 5 mM EDTA; 

1% Triton X-100; 200 µg/mL) proteinase K) followed by incubation at 50°C for 1 hour, 

then 85°C for 30 minutes.  

HbF protein analysis 

Erythroid cells derived from CD34+ cells were fixed with 0.05% glutaraldehyde 

and permeabilized with 0.1% TritonX-100. Cells were stained with anti-HbF-APC 

antibody (Invitrogen, HBF-1 clone) and analyzed by flow cytometry. HPLC 

quantification of HbF was performed using a cation-exchange column (Primus 

Diagnostics).  

In vitro sickling assay  

Human SCD CD34+ HSPCs (genotype HbSS) were purified from deidentified, 

discarded whole blood from partial exchange RBC transfusions (considered “not human 

subject research” by the St. Jude Children’s Hospital Institutional Review Board), 

differentiated into erythroblasts and cultured in 2% oxygen levels between days 14 and 

17 of culture (de Vasconcellos et al., 2014). Phase contrast microscopy (CKX41 

microscope, Olympus) was performed within 10 minutes of exposure to atmospheric 

oxygen and analyzed by manual counting of sickled cells, with blinding to sample 
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genotype. The cell permeable nuclear stain Hoechst 33342 (Sigma) was used to quantify 

nucleated cells by flow cytometry.  

Methylcellulose colony assays 

Human CD34+ cells were electroporated with GFP, Cas9 and gRNA expression 

plasmid using an Amaxa Nucleofector 2b (Lonza), program U-008 and cultured for 24 

hours. Live GFP+ cells were purified by fluorescent activated cell sorting (FACS) for 

GFP expression and seeded at 300 cells/ml into cytokine-free human methylcellulose 

(Stemcell) (300 cells/3 cm dish) supplemented with 2 U/mL EPO, 10 ng/mL SCF, 1 

ng/mL IL-3, and 1% penicillin/streptomycin. Individual BFU-E colonies were picked 

after two weeks of culture.  

Deep sequencing of genome modifications 

DNA was extracted from cells using Blood and Tissue DNA Extraction Kits 

(Qiagen). PCR amplification using CloneAmp HiFi Premix was performed with primers 

including Nextera adapters. An additional PCR was performed to individually index each 

sample, followed by sequencing on a MiSeq platform (Illumina) with 250bp, paired-end 

reads. The sequence alignment and mutation detection were performed using CLC 

Genomics Workbench (CLC Bio). HBG1/2 PCR primers used are as follows: 

HBG1-specific Fwd: CGCTGAAACTGTGGTCTTTATGAAAATT 

HBG2-specific Fwd: GCACTGAAACTGTTGCTTTATAGGAT 
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HBG common Rev1 (with HBG-specific Fwd): GGCGTCTGGACTAGGAGCTTATTG 

HBG-nonspecific Fwd: ATAACCTCAGACGTTCCAGAAGCGAGTGTG 

HBG common Rev2 (with HBG-nonspecific Fwd): 

AGAAGTCCTGGTATCCTCTATGATGGGAG 

 

qPCR detection of 5.2-kb deletion alleles  

A primer and probe set was designed to detect amplification of a HBG1 promoter-

specific sequence. TaqMan qPCR was performed on genomic DNA samples from 

HUDEP-2 and CD34+ cells using Universal TaqMan Mix (Thermo Fisher Scientific) for 

quantification of triplicates for each sample. ΔΔCt values were calculated based on 

amplification of RNaseP (Thermo Fisher Scientific) for copy number reference.  

5.2kb Fwd: ACGGATAAGTAGATATTGAGGTAAGC 

5.2kb Rev: GTCTCTTTCAGTTAGCAGTGG 

Taqman probe (FAM): ACTGCGCTGAAACTGTGGTCTTTATGA 

Fluorescence in situ hybridization (FISH) 

A 5.2-kb probe encompassing the intervening region between gRNA-1 cleavage 

sites in HBG2 and HBG1 was generated by PCR amplification and cloned using TA 

vector (Promega). Nick translation was used to label purified DNA with red-dUTP 
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(Alexa-Fluor-594, Molecular Probes), and a control HBB probe (RP11-1205H24) 

independently with green-dUTP (Alexa-Fluor-488, Molecular Probes). The probes were 

hybridized simultaneously with interphase and metaphase cells in 50% formamide, 10% 

dextran sulfate, and 2× SCC. Metaphase cells were stained with DAPI and scored for 

signals representing the potentially deleted region (red) and HBB (green).  

Statistical analyses 

Pairwise comparisons were assessed using an unpaired two-tailed Student's t-test. 

Results were considered significant when P - value < 0.05. Linear regression analysis 

was performed assess potential correlation between BFU-E colony mutation frequencies 

and γ-globin ratio. Tests were performed and graphed using Prism software (GraphPad).  
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Chapter 3 The role of Trim58 in erythropoiesis 

 

We initially became interested in studying Trim58 because of its identification by 

genome-wide association studies (GWAS) as a protein that potentially regulated human 

erythrocyte traits. GWAS do not distinguish causal variants from blocks of SNPs in 

linkage disequilibrium, however, so follow-up studies were required to test whether 

TRIM58 variation was responsible for changes in RBC formation and function. 

Moreover, Weiss lab alum Eugene Khandros, M.D., Ph.D., found that Trim58 co-

immunoprecipitated with protein aggresomes containing insoluble α-globin. Together, 

these forward genetic and biochemical screens suggested that Trim58 contributed to 

erythropoiesis and potentially in the setting of disease. In this work, we identified Trim58 

as an erythroid-specific E3 ubiquitin ligase with induced expression during late 

erythropoiesis. We performed short hairpin (sh) RNA-mediated knockdown studies in 

primary fetal liver erythroblasts to investigate its role in terminal maturation and 

enucleation. These studies were performed with Christopher Thom, M.D., Ph.D. and 

were published in Developmental Cell (2014). Figures and Tables can be found at the end 

of the text. 
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Introduction 

Humans produce about 2 million red blood cells each second to replace those lost 

by senescence (McGrath and Palis, 2008) in a process termed erythropoiesis. Mature red 

blood cells (erythrocytes) contain high levels of the O2 carrier hemoglobin and are 

distensible enough to withstand repeated passages through narrow capillary beds. These 

properties are acquired during precursor maturation through specialized cell divisions 

associated with activation of erythroid specific genes (Cheng et al., 2009; Welch et al., 

2004), repression of alternate lineage genes (Cheng et al., 2009; Kingsley et al., 2013; 

Welch et al., 2004), global DNA demethylation (Shearstone et al., 2011), reduced cell 

volume (Dolznig et al., 1995) and ejection of the nucleus to yield a reticulocyte, which 

develops further into a mature red blood cell (Liu et al., 2010). The mechanisms that 

govern these changes in cell structure and morphology are incompletely understood.  

The process of nuclear expulsion from erythroblasts (Keerthivasan et al., 2011; 

Konstantinidis et al., 2012) occurs exclusively in mammals and may represent an 

evolutionary adaptation to optimize erythrocyte rheology for transport through small 

capillary beds (Gaehtgens et al., 1981a; Mueller et al., 2008). Erythroblast enucleation is 

preceded by nuclear condensation and requires histone deacetylation (Ji et al., 2010; 

Popova et al., 2009) and suppression of the Myc proto-oncogene (Jayapal et al., 2010). 

The condensed nucleus polarizes to one side of the cell via transport mechanisms that 

require microtubules and phosphoinositide 3-kinase (Wang et al., 2012), followed by Rac 

GTPase-mediated formation of a contractile actomyosin ring between the incipient 
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reticulocyte and nucleus (Ji et al., 2008; Konstantinidis et al., 2012). Forces generated by 

the contractile ring promote further nuclear extrusion (Ji et al., 2008; Wang et al., 2012). 

Final separation between the reticulocyte and nucleus is facilitated by transport of lipid 

vesicles to the interface, which facilitates remodeling and resolution of the plasma 

membrane surrounding both structures (Keerthivasan et al., 2010; 2011). The ejected 

nucleus with surrounding plasma membrane is termed a pyrenocyte (McGrath and Palis, 

2008). In vivo, free pyrenocytes are scavenged by macrophages (Soni et al., 2006), while 

reticulocytes are released into the circulation and undergo further maturation (Gifford et 

al., 2006). This process shares several features with cytokinesis (Keerthivasan et al., 

2010; Konstantinidis et al., 2012). Moreover, all of the proteins currently known to 

participate in erythroblast enucleation are ubiquitously expressed and most function in 

mitosis. How erythroblasts co-opt generalized mitotic machinery for the lineage specific 

process of enucleation is unknown. Presumably, this is mediated in part by the expression 

of one or more erythroid restricted proteins. 

Here, we identify a role for the erythroid protein Trim58 in erythroblast 

enucleation. Trim58 is a member of the tripartite motif-containing family of proteins, 

whose members function as E3 ubiquitin ligases broadly in physiology and disease 

(Napolitano and Meroni, 2012). Genome-wide association studies (GWAS) show that 

single nucleotide polymorphisms (SNPs) linked to the human TRIM58 gene associate 

with variations in the size and/or number of circulating erythrocytes (Kamatani et al., 

2010; van der Harst et al., 2012). Here we identify Trim58 as an erythroid restricted 
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protein that facilitates erythroblast enucleation. Mechanistic studies suggest that Trim58 

exerts this function by inducing degradation of the microtubule motor dynein. These 

findings are the first to identify an erythroid specific protein that participates in 

erythroblast enucleation, likely by targeting a ubiquitous protein complex that is essential 

for normal function in virtually all other eukaryotic cells.  

Results 

 

Trim58 is induced during late stage erythropoiesis 

High-level human TRIM58 expression is specific to the erythroid lineage (Figures 

3.1A and 3.1B) and is strongly induced during the late stages of maturation (Figure 

3.1C). In situ hybridization analysis of embryonic day 14.5 (E14.5) mouse embryos 

showed predominant Trim58 mRNA expression in the fetal liver, an erythropoietic tissue 

(Figure 3.2A). Semiquantitative real-time PCR showed that Trim58 mRNA is 

upregulated >100-fold in late stage murine fetal liver erythroid precursors (Figure 3.2B). 

Chromatin immunoprecipitation-sequencing (ChIP-Seq) of primary erythroblasts 

demonstrated that the essential erythroid transcription factors Gata1 and SCL/Tal1 bind 

the Trim58 locus within the first intron, a common location for erythroid specific 

enhancers (Figure 3.2C) (Cheng et al., 2009; Pimkin et al., 2014). Thus, the Trim58 gene 

is strongly and specifically induced during terminal erythroid maturation, in part via 

direct activation by key hematopoietic transcription factors. 
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Trim58 regulates erythroblast enucleation 

We used shRNAs to suppress Trim58 expression during the in vitro maturation of 

primary fetal liver erythroblasts (Zhang et al., 2003). We infected purified E14.5 murine 

fetal liver erythroid precursors with retroviruses encoding Trim58-directed or control 

shRNAs along with a puromycin resistance cassette and green fluorescent protein (GFP) 

(Figure 3.3A) (Hemann et al., 2003). Infected cells were cultured for 1-3 days with 

dexamethasone, stem cell factor (SCF), erythropoietin (Epo) and puromycin to promote 

immature erythroblast expansion and select for infected cells. The erythroblasts were then 

switched to medium containing Epo only, which induced maturation to the reticulocyte 

stage. Four different shRNAs reduced Trim58 mRNA and protein by 60-90% (Figures 

3.3B and 3.3C). During late erythroid maturation, erythroblasts expel their nuclei to 

become anucleate reticulocytes that are Hoechst-negative by flow cytometry (Figure 

3.4A). The kinetics of enucleation were delayed in Trim58-deficient cultures (Figure 

3.4B), and enucleation was consistently inhibited at 48 hrs maturation by all four Trim58-

directed shRNAs analyzed compared to controls (Figures 3.4C). Histological staining 

confirmed these findings, showing reduced proportions of reticulocytes in Trim58-

deficient cultures (Figures 3.4D and 3.4E). Trim58 suppression also increased the 

proportions of mature erythroblasts containing two or more nuclei (Figure 3.5). 

Several parameters of erythroid maturation were not altered by Trim58 

knockdown, including downregulation of the cell surface marker CD44 (Figure 3.6) 
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(Chen et al., 2009). Trim58 knockdown produced only small and inconsistent effects on 

erythroblast proliferation (Figure 3.7A) and viability (Figure 3.7B). Hemoglobin 

accumulation (Figure 3.8A) and nuclear condensation (Figure 3.8B) occurred normally 

after Trim58 knockdown. Overall, these findings demonstrate that Trim58 depletion 

caused selective defects during late stage erythropoiesis, including reduced enucleation 

and also increased formation of multinucleated cells.  

 

Trim58 binds the molecular motor dynein 

Trim58 is predicted to be an E3 ubiquitin ligase with characteristic functional 

modules, including a PRY-SPRY (PS) domain that mediates substrate interactions 

(Figure 3.9A) (James et al., 2007; Woo et al., 2006). We performed pull down studies to 

identify Trim58 protein-binding partners, including potential degradation substrates. We 

used the isolated PS domain for these studies because ectopic expression of full-length 

wild type (WT) Trim58 was toxic to erythroblasts (data not shown). We expressed FLAG 

epitope-tagged PS domain in the erythroblast cell line G1E (Weiss et al., 1997), which 

contains no endogenous Trim58 protein, immunoprecipitated (IP) with FLAG antibody 

and analyzed the recovered proteins by SDS-polyacrylamide gel electrophoresis. This 

analysis identified five discrete protein bands (Figure 3.9B). Mass spectrometry of these 

bands identified multiple subunits of the cytoplasmic microtubule motor protein complex 

dynein (Table 3.1), as well as nuclear pore complex proteins, a Golgi component, and 

several other proteins (Table 3.2). Dynein regulates nuclear positioning and microtubule 
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structure within cells (McKenney et al., 2010; Splinter et al., 2010) and it was already 

known that erythroblast enucleation is microtubule-dependent (Konstantinidis et al., 

2012; Wang et al., 2012). Therefore, to investigate further a potential role for Trim58 in 

erythroblast enucleation, we focused on its interactions with dynein.  

We confirmed the Trim58-dynein interaction in G1E cells by FLAG-IP followed 

by Western blotting for dynein intermediate chain (DIC) and dynein heavy chain (DHC) 

(Figure 3.9C). Immunoprecipitation of DIC from mouse fetal liver recovered Trim58, 

demonstrating an interaction between the endogenous proteins (Figure 3.9D). In vitro 

pull down assays showed that recombinant GST-tagged PS interacted with purified 

holodynein, indicating a direct and specific interaction (Figure 3.10A). Dynein is a multi-

subunit complex that includes DHC, DIC, light intermediate chains, and light chains. The 

DIC mediates dynein interactions with several accessory proteins, mainly via the amino 

terminus (McKenney et al., 2011; Vallee et al., 2012). To test whether Trim58 interacted 

with DIC, we expressed hemagglutinin (HA)-tagged segments of the DIC amino terminus 

in 293T cells, incubated lysates with GST proteins and glutathione-Sepharose beads, and 

analyzed interacting polypeptides (Figure 3.10B). Western blotting for HA showed that 

PS interacted with DIC through an interface within the first 73 amino acids. We then used 

size-exclusion chromatography coupled to multiangle laser light scattering (SEC-

MALLS) to confirm this interaction in vitro using purified PS and DIC (residues 1-120). 

Bacterially expressed PS and GST-DIC(1-120) each eluted in gel filtration as a single 

peak when run individually (Figure 3.10C). MALLS data, which provide a reference-free 
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estimate of solution molecular weight, showed that PS eluted as a monomer (observed 

MW = 25.6 kD; expected mass = 23.3 kD), whereas GST-DIC(1-120) ran as a dimer 

(observed MW = 91.2 kD; expected mass of dimer = 79.6 kD), as a result of the known 

dimerization of GST (Fabrini et al., 2009). A ~1:1 mixture of the two proteins also eluted 

predominantly as a single peak with a lower retention time, as expected for the formation 

of a complex. The molecular weight of this signal calculated from MALLS data (126.2 

kD) is consistent with a 2:2 complex (expected mass = 114.4 kD) that represented a 1:1 

Trim58-DIC complex that additionally dimerized through the GST moiety. Together, 

these data show that Trim58 binds dynein directly through physical interactions between 

its PS domain and the DIC amino-terminus (Figure 3.10D). This region of DIC contains a 

coiled coil domain that interacts with other dynein regulatory proteins, including the 

dynactin subunit p150Glued and NudE (Ma et al., 1999; McKenney et al., 2011). 

 

Trim58 promotes dynein degradation 

 Next, we expressed FLAG/mCherry-tagged full length WT Trim58 in HeLa cells, 

which do not express endogenous Trim58, and assessed the effects on dynein protein 

levels. As controls, we expressed vector alone (V) or a “RING-dead” (RΔ) Trim58 

containing two missense mutations predicted to abrogate E3 ligase activity (Figure 

3.11A) (Zhang et al., 2012). The cultures were treated with puromycin for 3 days to 

enrich for infected cells and analyzed by Western blotting (Figure 3.11B). Although WT 

Trim58 slowed cell proliferation, we were able to create viable, stably expressing lines. 
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Compared to the RΔ mutant, WT Trim58 was poorly expressed, likely due its 

autoubiquitylation and subsequent proteasomal degradation, which occur with other Trim 

proteins (Versteeg et al., 2013). Dynein subunits DHC and DIC were nearly absent from 

cells expressing WT Trim58, but not from cells expressing the RΔ version or the vector 

alone (Figure 3.11B and data not shown). In order to assess the mechanism through 

which Trim58 expression causes dynein loss, Trim58-expressing HeLa cells were treated 

with the proteasome inhibitor MG132. As shown in the right-hand panel of Figure 3.11B, 

MG132 increased the expression of dynein and WT Trim58. Thus, Trim58 promotes the 

degradation of itself and of dynein via mechanisms that require E3 ubiquitin ligase 

activity and proteasomes.  

We then investigated whether Trim58 expression elicited cellular phenotypes 

characteristic of dynein loss. Dynein transports Golgi bodies along microtubules into 

perinuclear stacks at the microtubule organizing center (MTOC) (Quintyne et al., 1999). 

Inhibition of dynein by overexpression of CC1, a portion of p150Glued that interferes with 

the DIC-dynactin interaction, causes Golgi fragmentation and dispersal throughout the 

cytoplasm (Quintyne et al., 1999). We verified this result in HeLa cells and showed that 

WT Trim58, but not the RΔ mutant, produced a similar effect (Figure 3.12). Dynein also 

functions in mitotic spindle checkpoint inactivation to facilitate anaphase onset (Howell 

et al., 2001). Ectopic expression of WT Trim58 in HeLa cells caused mitotic defects 

characteristic of dynein inhibition, including prolonged interval between cell rounding 

and anaphase (Figures 3.13A and 3.13B) and cell death after rounding (Figure 3.13B 
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right panel) that were significantly worse than cells expressing vector or RΔ Trim58. 

Thus, ectopic expression of Trim58 in heterologous cells induces phenotypes that are 

consistent with dynein deficiency.  

 

Trim58 expression in erythroblasts coincides with loss of dynein and enucleation 

We investigated whether endogenous Trim58 expression promotes dynein loss 

during erythropoiesis. In murine erythroblast cultures undergoing semi-synchronous 

maturation, the induction of Trim58 protein at 24 hours correlated with loss of dynein 

subunits (DIC and DHC, Figure 3.14A) and the onset of enucleation (Figure 3.14C, black 

bars). The absence of dynein in late stages of erythroid maturation is consistent with 

proteomic studies of murine (Pasini et al., 2008) and human (Goodman et al., 2007) 

erythrocytes. In contrast, Trim58-deficient cells retained dynein protein aberrantly 

(Figures 3.14B and 3.15) and enucleation was delayed (Figures 3.14C gray bars). Dynein 

expression still declined in Trim58 knockdown erythroblasts, but with a ~12 hr delay. 

The eventual degradation of most dynein by 44 hours may be due to incomplete 

suppression of Trim58 and/or alternate protein degradation mechanisms. Overall, our 

findings demonstrate that expression of Trim58 destabilizes dynein and promotes 

enucleation. These findings are consistent with a model in which Trim58-mediated 

degradation of dynein and erythroblast enucleation are mechanistically linked.  
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We then used immunofluorescence to examine relationships between microtubule 

structure and nuclear positioning during enucleation. Erythroblast nuclei are surrounded 

by a network or “cage” of microtubules, similar to what occurs in most cells (Figure 

3.16) (Tsai et al., 2010; Wilson and Holzbaur, 2012). During enucleation, the nucleus 

moves away from the MTOC (Figure 3.20 and (Konstantinidis et al., 2012; Wang et al., 

2012)), opposite to what would occur with minus end-directed dynein transport. Later, 

the microtubule cage partially collapses, becoming detached from the cell cortex and 

nucleus as the latter is extruded (Figures 3.16ii-iv). Dynein stabilizes microtubules and 

tethers them to the cell cortex (Hendricks et al., 2012). Thus, events observed during 

enucleation, including directional nuclear movement and microtubule cage collapse 

(Figure 3.17), may be facilitated by dynein loss.  

 

Chapter commentary 

In this chapter, we performed a carefully controlled characterization of the effects 

of Trim58-targeting shRNA effects in a primary cell culture model of erythroid 

differentiation. These data indicated that Trim58-deficiency or the shRNAs themselves 

delayed erythroid enucleation, likely by disrupting the kinetics of dynein degradation. We 

also performed imaging-flow cytometry studies to dissect the specific nuclear 

morphology changes and movements (condensation, polarization, and extrusion) that 

were inhibited by (what we now know are caused by) Trim58-directed shRNAs 
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themselves. To test the effects of complete Trim58 loss on erythropoiesis and substrate 

degradation, the next step was generating and analyzing a Trim58 knockout mouse 

model. 
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Figures 

 

Figure 3.1. Human Trim58 expression is restricted to late stage erythroblasts. 

Human TRIM58 mRNA expression levels were measured by microarray analysis in (A) a 

panel of human tissue types (Wu et al., 2009), (B) a panel of human hematopoietic tissues 

(Novershtern et al., 2011), and (C) cultured primary human erythroblasts from peripheral 

blood buffy coat mononucleocytes (Merryweather-Clarke et al., 2011). The results in 

panel C represent mean ± SD for 3 biological replicates normalized to the average 

expression level in CFU-E cells, which were assigned a value of 1. **p<0.01. CFU-E, 

erythroid colony-forming units; Pro-E, proerythroblasts; Int-E, intermediate (basophilic) 

erythroblasts; Late-E, late (orthochromatic) erythroblasts. 
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Figure 3.2. Murine Trim58 is expressed during late stage erythropoiesis. 

(A) RNA in situ hybridization for Trim58 mRNA in a day 14.5 mouse embryo showing 

strong expression (red) in fetal liver, the site of definitive erythropoiesis. (B) Primary 

murine fetal liver erythroblasts were FACS-purified using a previously described gating 

strategy (Pop et al., 2010) and Trim58 mRNA was analyzed by semiquantitative real-time 

PCR. The y-axis shows relative mRNA expression, normalized to S0 cells, which were 

assigned a value of 1. The results represent mean ± SEM for 3 biological replicates. 

*p<0.05. (C) Chromatin immunoprecipitation-sequencing (ChIP-Seq) analysis of 

transcription factor binding to the Trim58 locus in primary murine erythroblasts (data 

from Pimkin et al, in revision). The blue line depicts the Trim58 gene, with exons shown 

as rectangles. Transcription factor binding sites are indicated in red. 
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Figure 3.3. Trim58-directed shRNAs reduce expression in murine erythroblast cultures. 

(A) Embryonic day 14.5 murine fetal liver erythroid precursors were purified, infected 

with retroviruses encoding Trim58 or control shRNAs, and cultured for 24-72 hrs in 

expansion medium with puromycin (Puro) to select for infected cells. The cells were then 

switched to maturation medium, which facilitates development to the reticulocyte stage 

over ~48 hrs. Epo, erythropoietin; SCF, stem cell factor; Dex, dexamethasone. Scale bar, 

10mm. (B) Western blot for Trim58 in erythroblasts expressing Trim58-directed or 

control shRNAs at 48 hrs maturation. Luc, luciferase; Scr, scrambled. The asterisk (*) 

represents a nonspecific band. “Long” and “short” exposures are from the same blot. (C) 

Suppression of Trim58 mRNA expression by four shRNAs. Trim58 mRNA levels were 
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measured at 48 hrs maturation by semiquantitative real time PCR and normalized to the 

average expression value for Gapdh, Actin, and Hprt mRNA levels. The y-axis represents 

mRNA expression level compared to the average value for control-treated samples 

(Vector, shLuc, shScr), which was set at 1. Results represent mean ± SD for 4 biological 

replicates. 
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Figure 3.4. Trim58 knockdown inhibits murine erythroblast enucleation. 

FACS analysis for enucleation of control (shLuc) and Trim58-deficient (shTrim58 #4) 

erythroid cultures at the indicated time points. During maturation, erythroblasts become 

smaller, indicated by decreased forward scatter, and ultimately enucleate to become 

Hoechst-negative reticulocytes (boxed regions). (B) Summary of percent (%) enucleation 

at the indicated time points in cultures treated with control (shLuc) or Trim58-directed 

(#4) shRNAs. Results represent mean ± SD for 3 biological replicates. (C) Four Trim58-

directed shRNAs inhibit enucleation. Following 48 hrs maturation, erythroblasts treated 

with the indicated shRNAs were analyzed by FACS for enucleation. (D) Representative 

histologies of control (shLuc) and Trim58-deficient (shTrim58 #4) erythroid cultures 
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after 36 hrs maturation. Red arrows denote anucleate reticulocytes. Scale bar, 20 mm. R, 

reticulocyte; E, erythroblast; N, extruded nucleus. (E) Summary of cell counts from panel 

D showing percent (%) reticulocytes. Six hundred cells were counted on each slide. 
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Figure 3.5. Trim58 knockdown results in multinucleated erythroblasts. 

Murine fetal liver erythroblasts were infected with control retrovirus(es) (empty Vector; 

shLuc, Luciferase; and/or shScr, Scrambled), Trim58-directed shRNA(s) (sh58 #3, #4, 

#5, and/or #7) and/or mock-treated. Infected cells were expanded with puromycin for 72 

hrs and then induced to mature at time 0. (A) At 48 hrs maturation, erythroblasts treated 

with shTrim58 #4 were cytocentrifuged onto a glass slide, stained with May Grünwald 

and Giemsa reagents, and visualized by light microscopy. Arrows denote binucleate 

erythroblasts (BE). Scale bar, 10 mm. (B) The percentage of cells containing 2 or more 

nuclei was quantified by visual inspection. Results represent mean ± SD for 3 

independent experiments with >200 cells counted per treatment group per experiment. 
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Figure 3.6. Trim58 knockdown does not affect CD44 downregulation kinetics 

during erythroid maturation. 

Erythroblasts expressing control (shLuc, black) or Trim58 (sh58 #4, gray) shRNAs were 

analyzed serially by flow cytometry for CD44, a cell surface marker that progressively 

decreases during erythroid maturation (Chen et al., 2009). Representative histogram plots 

of FACS data are shown. Below the histograms are line graphs depicting CD44 mean 

fluorescence intensity (mfi) over time (mean ± SD for 4 biological replicates). % max, 

percent (%) of maximum cell count. 
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Figure 3.7. Trim58 knockdown does not affect cell proliferation or viability. 

Murine fetal liver erythroblasts were infected with control retrovirus(es) (empty Vector; 

shLuc, Luciferase; and/or shScr, Scrambled), Trim58-directed shRNA(s) (sh58 #3, #4, 

#5, and/or #7) and/or mock-treated. Infected cells were expanded with puromycin for 72 

hrs and then induced to mature at time 0. (A) Infected erythroblast proliferation was 

quantified at 0, 24, and 48 hrs maturation. Cell numbers were normalized to the cell count 

at 0 hrs. Results represent mean ± SD for 4 biological replicates. (B) Cell viability was 

measured by fluorescent amino-reactive (LiveDead) staining at 0, 24, and 48 hrs 

maturation. Results represent mean ± SD for 4 biological replicates. A key depicting the 

color of each treatment group is shown to the right. 
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Figure 3.8. Trim58 knockdown does not affect Hb content or nuclear condensation. 

Murine fetal liver erythroblasts were infected with control retrovirus(es) (empty Vector; 

shLuc, Luciferase; and/or shScr, Scrambled), Trim58-directed shRNA(s) (sh58 #3, #4, 

#5, and/or #7) and/or mock-treated. Infected cells were expanded with puromycin for 72 

hrs and matured for 48 hours. (A) Hemoglobin content measured at 48 hrs maturation, 

normalized to total cellular protein. Results represent mean ± SD for 3 independent 

experiments. The top panel shows the red color of cell pellets. (B) Nuclear size 

quantification at 48 hrs maturation. Erythroblasts treated with the indicated shRNAs were 

centrifuged onto a slide and stained with May Grünwald and Giemsa reagents. The area 

encompassed by each nucleus was quantified by microscopy using the Analyze Particles 

feature in FIJI (Schindelin et al., 2012). Results represent mean ± SD for 3 independent 

experiments with >50 cells counted per treatment group per experiment. *p<0.05, 

**p<0.01. 
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Figure 3.9. The Trim58 PRY-SPRY domain binds the molecular motor dynein. 

(A) Domain structures of Trim58 showing the “tripartite” RING-BBox-Coiled Coil (CC) 

motif and the immunoglobulin-like PRY-SPRY domain. Amino acid numbers are 

indicated. In some TRIM proteins, the RING domain recruits E2 conjugases carrying 

activated Ubiquitin and the PRY-SPRY domain binds substrates. (B) FLAG-tagged 

Trim58 PRY-SPRY domain (PS), or vector (V), were stably expressed in G1E 

proerythroblast cells. Lysates were immunoprecipitated (IP) with FLAG antibody, 

fractionated by SDS-polyacrylamide gel electrophoresis, and stained with Coomassie 

Blue Silver. Numbered arrows denote the regions of the gel from which bands were 

excised for mass spectrometric (MS) analysis. Bands from both V and PS IPs were 

analyzed. MS identified peptides from dynein heavy chain (DHC), dynein intermediate 

chain (DIC), dynein light intermediate chains 1/2 (DLIC), and Trim58 PRY-SPRY (PS) 

predominantly in Bands 1, 3, 4, and 5, respectively. These proteins were only identified 
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in bands from the PS IP lane. See Tables 3.1 and 3.2 for a full listing of identified 

proteins. Inp, input (1%). (C) Lysates of G1E cells expressing FLAG-PS or vector (V) 

were immunoprecipitated with FLAG antibody and analyzed by Western blotting 

(immunoblotting, IB) for DHC, DIC, FLAG and Codanin1 (Cdan1, negative control). 

Inp, input (5%). (D) Embryonic day 14.5 murine fetal liver erythroblasts were lysed, 

immunoprecipitated with anti-DIC antibody or IgG control and analyzed by Western 

blotting for the indicated proteins. a globin was included as a negative control. Inp, input 

(0.5%). 
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Figure 3.10. Trim58 binds directly to the DIC amino terminus. 

(A) Recombinant purified GST-Trim58 PS domain (GST-PS) or GST alone were 

incubated with purified bovine holodynein complex and glutathione-Sepharose beads. 

Bound proteins were analyzed by Western blotting. Equal percentages of total input 

(Inp), pull down (PD) and supernatant (SN) samples were loaded. (B) 293T cells were 

transfected with expression plasmids encoding hemagglutinin (HA) fused to the indicated 

DIC amino acids. After 24 hrs, cells were lysed and incubated with GST-PS or GST and 

glutathione-Sepharose beads. Bound proteins were analyzed by anti-HA Western 

blotting. PD, pull down. SN, supernatant (1%). (C) SEC-MALLS data for PS, GST-
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DIC(1-120) and a 1:1 mixture. Protein concentration was measured on an inline 

refractive index detector. Light scattering data converted to molecular weight are shown 

above each chromatography trace and relate to the right-hand y-axis. The observed 

molecular weights are consistent with a 1:1 interaction between the two proteins 

augmented by the dimerization of the GST tag appended to DIC(1-120). (D) DIC domain 

structure showing the amino-terminal coiled coil (CC) motif, which binds Trim58. This 

region of DIC also binds dynactin/p150Glued and NudE, which are previously 

characterized regulators of dynein function (McKenney et al., 2011). The DIC carboxy-

terminal domain contains WD repeats that interact with DHC. Amino acid numbers are 

indicated (aa#). 
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Figure 3.11. Trim58 facilitates dynein degradation. 

(A) Schematic diagram showing full length Trim58 constructs with amino-FLAG and 

carboxyl-mCherry tags. The RD mutant contains two missense mutations in the RING 

domain that abrogate ubiquitin ligase activity. (B) Western blot analysis of Trim58-

expressing HeLa cells. Cells were infected with retrovirus encoding FLAG-Trim58 (WT 

or RD) or vector (V), selected in puromycin for 3 days, then analyzed by Western 

blotting before or after treatment with the proteasome inhibitor MG132 (10 mM) for 4 hrs 

at 37 ºC. 
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Figure 3.12. Trim58 expression causes Golgi spreading, a marker of dynein 

dysfunction.  

Assessment of Golgi structure in HeLa cells expressing Trim58. HeLa cells were 

transfected with expression plasmids encoding Trim58-mCherry or CC1-mCherry, a 

dynein inhibitor (Quintyne et al., 1999). After 36 hrs, the cells were fixed, stained for the 

Golgi matrix protein GM130 and DNA (DAPI), and visualized by confocal microscopy. 

The percentage (%) of mCherry (mCh) positive cells that displayed normal punctate 

perinuclear Golgi body distribution is shown at right. The results represent mean ± SD 

for 3 independent experiments, with >100 cells counted per experiment. **p<0.01 vs. 

Vector control. 
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Figure 3.13. Trim58 expression perturbs mitotic progression.  

(A) Mitotic progression in HeLa cells expressing Trim58-mCherry constructs was 

analyzed by time-lapse microscopy. Representative images show mitotic progression in 

outlined cells. Cells expressing WT Trim58 exhibit delayed progression from cell 

rounding (~metaphase) to anaphase, compared to cells expressing vector or RD Trim58. 

BF, Brightfield; mCh, mCherry. Scale bar, 16mm. (B) Quantitative analysis of mitosis in 

Trim58-expressing HeLa cells. The graph on the left shows time elapsed between cell 

rounding and anaphase. The results represent mean ± SD for all observed mitotic cells. 

**p<0.01. The graph on the right shows the percentages of cells with delayed (>200 min) 

or failed mitosis manifested as cell death between rounding and anaphase. (V, n=134 

normal mitoses; WT, n=50 normal, 13 delayed, 11 failed mitoses; RD, n=100 normal, 7 

delayed mitoses). 
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Figure 3.14. Trim58 expression correlates with loss of dynein and enucleation 

during erythroid maturation.  
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Fetal liver erythroblasts were infected with retrovirus encoding shRNA against (A) 

luciferase (shLuc) or (B) Trim58 (shRNA #4), cultured in expansion medium for 72 hrs, 

and shifted to maturation medium at time 0. Whole cell lysates were prepared at the 

indicated time points and analyzed by Western blotting. A control sample from 44 hrs 

maturation was run in the lane marked “+” as a positive control for Trim58. (C) Rate of 

enucleation in cells from panels A and B, determined as shown in Figure 3.4A. The 

results represent mean ± SD for 4 biological replicates. *p<0.05; **p<0.01; ns, not 

significant. 
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Figure 3.15. Trim58 deficiency causes aberrant dynein protein retention in late 

stage erythroblasts.  

Erythroblast cultures expressing control constructs (Vector, shLuc) or Trim58-directed 

shRNAs (sh58 #4, sh58 #7) were expanded in puromycin for 72 hrs, then induced to 

mature for 48 hrs and collected for analysis. (A) Whole cell lysates were analyzed by 

Western blotting for the indicated proteins. DHC, dynein heavy chain; DIC, dynein 

intermediate chain. (B) Whole cell lysate cDNA was analyzed by semiquantatitive real 

time PCR for dynein intermediate chain (Dync1i2), dynein heavy chain (Dync1h1) and 

Trim58. The y-axis represents mRNA expression level compared to the average value for 
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control-treated samples (Vector, shLuc), which was set at 1. Results represent mean ± SD 

for 4 biological replicates. **p<0.01; ns, not significant. 
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Figure 3.16. Directional nuclear movement during erythroblast enucleation.  

Primary murine fetal liver erythroblasts were fixed, stained for microtubules (α tubulin, 

green) and DNA (DAPI, blue), and imaged by deconvolution fluorescent microscopy. 

Arrow indicates the microtubule organizing center (MTOC). Scale bar, 2 µm. 
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Figure 3.17. Model for the actions of Trim58 during erythroblast enucleation.  

In early maturation, the nucleus resides within a cage of microtubules (green) and dynein 

(blue) keeps the nucleus in close proximity to the MTOC (yellow). Induction of Trim58 

causes dynein degradation, which may promote nuclear polarization through multiple 

mechanisms. A microtubule motor imbalance may allow unopposed kinesin molecular 

motors to polarize the nucleus within a microtubule cage (top) and/or microtubule cage 

collapse could free the nucleus to polarize. Following polarization and microtubule 

disassembly, nuclear extrusion occurs. 
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Tables 

Protein Name Accession MW Band Unweighted 

Spectra 

Unique 

Peptides 

Percent 

Coverage 

Cytoplasmic dynein 1       

Heavy chain 1 IPI00119876 532 kD 1 189 95 19 

Intermediate chain 2 IPI00131086 68 kD 3 16 7 14 

Light intermediate chain 1 IPI00153421 57 kD 3,4 38 12 27 

Light intermediate chain 2 IPI00420806 54 kD 4 12 7 16 

       

Trim58 PRY-SPRY (Bait)       

Trim58 IPI00353647 55 kD 4,5 91 14 26 

Table 3.1. Dynein subunits identified by mass spectrometric analysis of proteins that 

coimmunoprecipitated with the Trim58 PRY-SPRY domain in erythroid cells.  
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Chapter 4 The role of Trim58 in vivo 

 

In this chapter, we performed experiments to follow up in vitro studies 

implicating Trim58 as a necessary component of erythroblast enucleation. In the previous 

chapter, we showed that Trim58 stimulated ubiquitination and proteasomal degradation 

of the dynein molecular motor complex. Expression of Trim58-directed short hairpin 

RNAs (shRNAs) in cultured mouse fetal liver erythroblasts caused abnormal 

accumulation of dynein and delayed erythroblast enucleation. To examine the functions 

of Trim58 in vivo, we disrupted the gene by removing exon 3, which encodes an essential 

coiled-coil motif. Figures and Tables can be found at the end of the text. 
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Chapter Summary  

Trim58 is an E3 ubiquitin ligase expressed at high levels in late stage erythroblasts. 

Previous work showed that Trim58 stimulated ubiquitination and proteasomal 

degradation of the dynein molecular motor complex. Expression of Trim58-directed short 

hairpin RNAs (shRNAs) in cultured mouse fetal liver erythroblasts caused abnormal 

accumulation of dynein and delayed terminal maturation by inhibiting extrusion of the 

nucleus (enucleation). To examine the functions of Trim58 in vivo, we disrupted the gene 

by removing exon 3, which encodes an essential coiled-coil motif. Erythroblasts, 

reticulocytes and RBCs of homozygous targeted mice lacked Trim58 protein and 

contained abnormally elevated dynein levels. The mutant mice showed mild alterations in 

red blood cell size and number, consistent with genome wide association studies 

(GWAS) linking the human TRIM58 gene to these traits. However, Trim58-/- mice had no 

anemia at steady state and recovered normally after phenylhydrazine-induced hemolysis. 

Moreover, in contrast to results obtained using RNA interference in cultured wild type 

erythroblasts, Trim58-/- erythroblasts enucleated normally in the same assays. These 

studies show that Trim58 eliminates dynein expression during erythroid maturation in 

vivo. However, this process is largely dispensable for erythropoiesis. 
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Introduction 

Mature red blood cells are void of organelles and contain mainly hemoglobin, 

which makes up approximately 95% of total cellular protein (Roux-Dalvai et al., 2008). 

To achieve this specialized state, streamlining of the proteome occurs during erythroid 

maturation via multiple mechanisms including transcriptional and post transcriptional 

alterations in gene expression, and selective protein elimination, in part through 

autophagy and the ubiquitin proteasome system (UPS). The UPS is a multi-enzyme 

cascade that catalyzes the formation of polyubiquitin chains onto proteins at specific 

lysine residues, thereby targeting them for degradation. Generalized inhibition of the UPS 

by drugs or RNA interference impairs erythropoiesis (Chen et al., 2002; Egan et al., 

2015; James et al., 2007). Indeed, anemia is a recognized toxicity of bortezimib, an FDA-

approved proteasome inhibitor used for treating multiple myeloma (San Miguel et al., 

2006). 

The UPS facilitates selective elimination of proteins, including those that are 

irreversibly damaged, cytotoxic, or unnecessary (Khandros and Weiss, 2010). This 

pathway degrades target proteins through a multistep mechanism. An E1 enzyme 

activates ubiquitin and transfers it to an E2 ubiquitin-conjugating enzyme. E3 ubiquitin 

ligases act as scaffolds to bind the E2-ubiquitin enzyme and substrate, thereby promoting 

its polyubiquitination and subsequent recognition by the proteasome, a multi-subunit 

organelle that includes numerous proteases. Hundreds of different E3 ligases, each 

recognizing a limited repertoire of substrates, confer specificity to the UPS. 



www.manaraa.com

83 

 

Transcriptome and proteomic studies showed that UPS components, including numerous 

E3 ligases, are upregulated during late stages of erythroid maturation (An et al., 2014; 

Egan et al., 2015; Pasini et al., 2006). However, relatively few of these E3 ligases have 

been studied with respect to substrate recognition and functions during RBC formation 

(Khandros and Weiss, 2010; Wefes et al., 1995).  

We recently characterized Trim58, an E3 ubiquitin ligase that is strongly induced 

during late stage erythropoiesis (Thom et al., 2014). In human GWAS, TRIM58-linked 

nucleotide polymorphisms segregate with altered RBC size and number, implicating a 

role in erythropoiesis (Ganesh et al., 2009; van der Harst et al., 2012). Trim58 is a 

member of the Tripartite Motif-containing (Trim) superfamily including more than 65 

proteins, many of which function as E3 ubiquitin ligases with important roles in cell 

physiology (Ozato et al., 2008). The N-termini of Trim proteins contain sequential RING 

(Really Interesting New Gene), B box, and coiled-coil domains, while various substrate 

binding domains are present at the C-terminus (James et al., 2007). Previously, we 

showed that the C-terminal PRY-SPRY domain of Trim58 binds the dynein molecular 

motor complex to facilitate its ubiquitination and degradation in vitro and in cultured 

cells (Thom et al., 2014). Dynein is an essential multi-subunit protein that transports 

cellular cargo, including proteins, vesicles, and organelles, along microtubules toward the 

minus-end. Expression of Trim58-targeting short hairpin (sh) RNAs in cultured fetal liver 

erythroblasts prevented dynein elimination during terminal maturation and delayed 

enucleation that occurs during normal RBC formation. Thus, we proposed that Trim58-
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mediated degradation of dynein facilitates erythroid maturation by promoting 

enucleation.  

To examine further the role of Trim58 in erythropoiesis, we disrupted the 

corresponding gene in mice. Removal of exon 3, which encodes an essential coiled-coil 

domain, largely eliminated both ubiquitin ligase activity towards dynein and Trim58 

expression in erythroblasts. Nucleated erythroblasts, reticulocytes and mature red blood 

cells from Trim58-/- mice contained abnormally elevated levels of dynein. The mutant 

mice also exhibited altered RBC number and size (mean corpuscular volume, MCV), 

consistent with GWAS, which linked the human TRIM58 gene to these traits.  However, 

Trim58-/- mice had no anemia at baseline and recovered normally after phenylhydrazine-

induced hemolysis. Moreover, terminal maturation of cultured Trim58-/- fetal liver and 

adult erythroblasts, including enucleation, was normal. Furthermore, we showed that 

Trim58 shRNAs inhibit enucleation of cultured mouse erythroblasts through sequence-

independent off-target effects that vary according to genetic strain. Collectively, our 

studies demonstrate that Trim58 promotes degradation of dynein in vivo, but is largely 

dispensable for erythropoiesis and thrombopoiesis.  
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Results 

Disruption of the Trim58 gene.  

The first intron of Trim58 contains a predicted erythroid enhancer identified by a 

DNase I hypersensitive site and binding of the transcription factors Gata1 and Tal1 

(Thom et al., 2014). Our targeting strategy preserved this region, as intergenic enhancers 

can potentially regulate distant genes (Harmston and Lenhard, 2013). We removed 

Trim58 exon 3 (Figures 4.1A and 4.2A), which encodes a coiled-coil domain required for 

ubiquitin ligase activity of other Trim family members (Sanchez et al., 2014). Mutant 

mice, referred to as Trim58-/- for reasons discussed below, were born at normal 

Mendelian ratio, exhibited no obvious morphological abnormalities and survived to 

adulthood. We verified correct targeting of the Trim58 locus by Southern blotting (Figure 

4.11B), PCR of genomic DNA (Figure 4.1C) and quantitative reverse transcription PCR 

(RT-PCR) of E14.5 fetal liver cells (Figure 4.2A-B). Homozygous and heterozygous 

mutant erythroblasts expressed an aberrant Trim58 mRNA that included exons 1 and 2, 

but lacked distal sequences (Figures 2A-B and 4.3A). Thus, the mutant gene is probably 

transcribed at normal rate, but largely processed abnormally with loss of sequences that 

are distal to deleted exon 3 (Figure 4.2B, right).  

Excision of Trim58 exon 3 creates an in-frame deletion of 77 amino acids. In 

principle, this could generate a mature RNA encoding an internally deleted form of 

Trim58 protein that lacks only the coiled-coil region, but contains the RING, B-box and 

PRY-SPRY domains (Figure 4.3B). This Trim58 transcript, termed ΔCC, was expressed 
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in homozygous mutant erythroblasts (Figure 4.3A), albeit at very low levels (Figure 4.2B, 

right panel). ΔCC or wild type (WT) Trim58 proteins were not visualized in Western blot 

studies of Trim58-/- fetal livers (Figure 4.2C) or circulating reticulocytes from adult 

mutant animals (Figure 4.10C, below). Nonetheless, we assessed potential functions of 

the Trim58 ΔCC protein by transducing NIH3T3 cells with retroviruses encoding 

FLAG/mCherry-tagged versions of either WT Trim58, Trim58 ΔCC, or a “RING-dead” 

(RΔ) Trim58 containing two missense mutations that eliminate E3 ubiquitin ligase 

activity (Figure 4.3B-C). In contrast to Trim58-/- erythroblasts, Trim58 ΔCC was stably 

expressed in NIH3T3 cells. However, unlike WT Trim58, ectopically expressed ΔCC 

Trim58 failed to eliminate dynein (Figure 4.3C). Overall the mutant protein is expressed 

in heterologous cells, although it does not degrade dynein, in agreement with studies 

demonstrating that the CC domain is necessary for ubiquitin ligase activity (Sanchez et 

al., 2014). However, Trim58 ΔCC mRNA and protein are expressed minimally in 

Trim58-/- erythroblasts. Thus, we conclude that ablation of exon 3 eliminated endogenous 

erythroid Trim58 activity.  

 

Normal hematopoiesis in Trim58-/- mice with a mixed genetic background. 

Initially, we analyzed Trim58-/- mice with a mixed genetic background (Sv129, 

FVB, and C57Bl/6). No major differences in erythroid parameters occurred in mutant 

mice compared to WT littermates, although we observed trends toward decreased RBC 
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number and increased mean corpuscular volume (MCV) (Table). Fetal liver, bone 

marrow and splenic erythroid precursors were normal in number and no maturation 

defects were evident by flow cytometry analysis of cell surface markers Ter119 and 

CD71 (Figures 4.4 and 4.5). Adult Trim58-/- mice exhibited normal recovery after anemia 

induced by phenylhydrazine (Figure 4.5C). 

 

Trim58-/- erythroblasts undergo normal enucleation in vitro. 

Previously, we showed that multiple shRNAs targeting different regions of 

Trim58 mRNA inhibited enucleation of cultured WT fetal liver erythroblasts (Thom et 

al., 2014). We performed similar studies on E14.5 fetal liver erythroblasts from the 

progeny of intercrossed Trim58+/- mice. Erythroblasts were expanded for 1-3 days by 

culturing in dexamethasone, stem cell factor, and erythropoietin (Epo), followed by 

removal of the first two components to induce terminal maturation. We monitored 

erythroblast enucleation by flow cytometry of cells stained with the erythroid antigen 

Ter119 and Hoechst 33342, a cell permeable nuclear dye (Figure 4.6A). Surprisingly, 

Trim58-/- fetal liver erythroblasts enucleated normally after 24 and 48 hours of maturation 

(Figure 4.6B), contrasting with our previous results obtained after expression of Trim58 

shRNAs in E14.5 erythroblasts (strain CD1) (reference (Thom et al., 2014) and Figure 

4.6C). This apparent discrepancy could be due to strain-specific effects of either Trim58 

deficiency or Trim58 shRNAs. Two independent Trim58 shRNAs had no effect on the 

enucleation of mixed strain (Sv129, FVB, and C57Bl/6) Trim58-/- or Trim58+/+ 
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erythroblasts (Figure 4.7A), despite effective reduction of Trim58 mRNA in mixed strain 

WT cells (Figure 4.7B). 

 

Trim58-/- mice with C57Bl/6 background have mild hematological abnormalities.  

To investigate further potential strain effects of Trim58 deficiency, we bred 

Trim58-/- alleles onto a pure C57Bl/6 background. Similar to what we observed on the 

mixed genetic background, C57Bl/6 Trim58-/- mice were not anemic (Table 4.1) and 

RBC morphologies on blood smears were normal (not shown). Trim58-/- C57Bl/6 mice 

exhibited mild but significantly decreased RBC number and increased MCV (Table 4.1), 

similar to the trends observed in Trim58-/- mixed background mice. Of note, GWAS 

studies link the human TRIM58 gene to variations in RBC number, MCV (Gieger et al., 

2011; Kamatani et al., 2010; van der Harst et al., 2012). Human GWAS studies also link 

TRIM58 allelic variation to altered platelet count; this parameter trended downward in 

Trim58-/- mice, but was not significant (p=0.09 and p=0.2 for mixed genetic background 

and C57/Bl6 strains, respectively). 

 

Trim58-/- mice with C57Bl/6 background reveal strain-specific shRNA off-targeting.  

Remarkably, two different Trim58 shRNAs reduced enucleation of C57Bl/6 

erythroblasts by 25-35%, regardless of Trim58 genotype (+/+ or -/-) (Figure 4.8A). As 

expected, the shRNAs effectively reduced full-length Trim58 mRNA in C57Bl/6 
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erythroblasts (Figure 4.8B). To summarize, Trim58 gene disruption in mixed or C57Bl/6 

backgrounds produced mild alterations in RBC number and MCV, with no effects on in 

vitro enucleation of cultured erythroblasts. In contrast, two shRNAs targeting non-

overlapping segments of Trim58 mRNA inhibited enucleation of cultured CD1 and 

C57Bl/6 erythroblasts, but had no effects on erythroblasts with mixed genetic 

background. Thus, the effects of Trim58 shRNAs on erythroblast enucleation are genetic 

strain-specific and occur through mechanisms that are independent of Trim58 

suppression. 

 

Increased dynein in Trim58-/- erythroblasts.  

To investigate whether Trim58 promotes dynein degradation in vivo, we 

compared its expression in erythroid cells of WT and Trim58-/- mice (mixed strain, 

Sv129/FVB/C57Bl/6). We phlebotomized animals to induce semi-synchronous 

erythropoiesis (Figure 4.9A) and collected bone marrow and circulating RBCs at various 

stages of maturation. Trim58+/+ and Trim58-/- erythroblasts were purified from the bone 

marrow by Ter119 immunomagnetic bead selection; cells of both genotypes were of 

similar maturation stage, based on Ter119 and CD71 expression (Figure 4.9B). Although 

dynein is expressed in most cells, levels decrease during erythroid maturation (Thom et 

al., 2014), as evidenced in the current study by Western blotting for dynein intermediate 

chain (IC) in WT Ter119+ bone marrow erythroblasts (Figure 4.9C). In contrast, Trim58-/- 
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erythroblasts expressed dynein IC at a level similar to that of unfractionated bone 

marrow.  

Next, we used a Percoll gradient to purify circulating reticulocytes and mature 

RBCs (Blanc et al., 2009) (Figure 4.10A). Coomassie blue silver stain showed no 

obvious differences in the protein content of WT vs. Trim58-/- reticulocytes (Figure 

4.10B). Trim58 protein was not detected by Western blotting in homozygous mutant 

reticulocytes (Figure 4.10C). However, Trim58-/- reticulocytes (Figure 4.10C) and RBCs 

(Figure 4.10D) expressed abnormally elevated levels of dynein IC. Together, these data 

are consistent with previous findings that Trim58 ubiquitinates dynein IC to facilitate 

degradation of the dynein complex (Thom et al., 2014). The current data demonstrate that 

Trim58 promotes dynein degradation during erythropoiesis in vivo, although 

accumulation of dynein upon loss of Trim58 has minimal consequences on RBC 

formation at baseline or during recovery of induced hemolytic anemia, and no effect on 

enucleation of cultured erythroblasts.  

 

Chapter commentary 

Here, we discovered an unusual phenotype caused by shRNAs, found to be 

independent of Trim58 mRNA suppression. This is discussed further in Chapter 6. These 

studies emphasize the importance of follow-up studies and the caution necessary in 

interpreting results using a single experimental approach (i.e. shRNA-induced 
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knockdown in fetal liver erythroblasts). Overall, we felt it was important to gain a deeper 

understanding of these effects in such a commonly used model system of erythroid 

differentiation and maturation. This commitment drove us to test the effects of shRNAs 

on different strains of mice and subsequently backcross the Trim58-/- allele onto a 

penetrant background.   
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Figures 

 

Figure 4.1. Generation of Trim58-/- mice.   

(A) Design of Trim58-/- mice. LoxP sites were inserted around exon 3, and Cre 

recombinase expression mediated excision in the ES cells. (B) Southern blot of targeted 

ES cell clones with predicted StuI pattern. (C) Validation of PCR amplification used for 

genotyping genomic DNA. 
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Figure 4.2. Disrupted Trim58 expression in Trim58-/- mice.  

(A) Trim58 gene structure (not drawn to scale). The asterisk denotes the epitope for an 

anti-peptide antibody (amino acids 7-29). Half arrows indicate primer pairs used for qRT-

PCR analysis of mRNA expression (see panel B). Exon 3, which was deleted in the gene 

targeted mice, and the corresponding PCR primers are shown in grey. (B) Quantitative 

RT-PCR analysis of E14.5 fetal liver mRNA from wild type (+/+), heterozygous (+/-), and 

Trim58-null (-/-) embryos using the primer pairs shown in panel A. The results represent 
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mean ± standard deviation for 3 biological replicates. (C) Western blot of E14.5 fetal 

liver using the anti-peptide antibody described in panel A. β-actin was used as a loading 

control. Arrow denotes the predicted molecular weight (50 kD) of protein with deleted 

exon 3.  
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Figure 4.3. Trim58-/- mice express an inactive Trim58 allele, ΔCC.   

(A) Non-quantitative reverse transcription-PCR of E14.5 fetal liver cells to detect variant 

Trim58 mRNA. Higher band represents full-length Trim58 expression in WT, and the 
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lower band detected in heterozygotes and ΔCC represents truncated mRNA excluding 

exon 3. (B) Schematic of Trim58 expression constructs with N-terminal FLAG and C-

terminal mCherry tags. The RΔ mutant contains two missense mutations in the RING 

domain that abolish E3 ubiquitin ligase activity. The ΔCC cDNA was cloned from 

Trim58-/- fetal liver tissue. (C) Western blot analysis of Trim58-expressing NIH3T3 cells. 

Cells were infected with retrovirus expressing FLAG-Trim58 (WT, RΔ, or ΔCC) or 

empty vector (V), selected in puromycin for 3 days, then analyzed by Western blot for 

dynein IC, FLAG, and actin for loading control. 
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Figure 4.4. Normal erythropoiesis in Trim58-/- embryos with mixed genetic 

background (Sv129, FVB, and C57Bl/6).  

(A) Flow cytometry analysis of E14.5 fetal liver cells for CD71 and Ter119 expression. 

The data shown are representative from two experiments examining two different litters. 

(B) Quantitation of plots for each population shown in panel C, represented as mean ± 

SD. n = 7 for each group, from three E14.5 pregnancies. Means were ns by student’s t-

test.  
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Figure 4.5. Normal adult erythropoiesis in E14.5 Trim58-/- mice.   

(A) Quantitation of Ter119+, CD71high and Ter119+, CD71low erythroid cells in bone 

marrow isolated from mice (age 8-12 weeks), evaluated by flow cytometry. Results are 

shown as mean ± SD (n = 3). Means were ns by student’s t-test. (B) Quantitation of 

Ter119+ erythroid cells in spleens isolated from mice (age 8-12 weeks). Results are 

shown as mean ± SD (n = 3). Means were ns by student’s t-test. (C) Recovery of 
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Trim58+/+, Trim58+/- and Trim58-/- mice after phenylhydrazine (PHZ)-induced hemolysis. 

Arrows indicate treatments with PHZ (60 mg/kg). Serial hematocrit measurements were 

performed on peripheral blood. n = 4 for each group; each time point was ns by student’s 

t-test.  
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Figure 4.6. Trim58-/- and Trim58-deficient erythroblasts from mixed strain mice 

mature normally in vitro.  

(A) Fetal liver erythroblasts isolated from E14.5 embryos (from heterozygous crosses) 

were cultured in erythroid expansion medium containing for 72 hours, then switched to 

maturation medium. Flow cytometry analysis is shown after 24 hours in maturation 

medium. Cells were stained with the erythroid maturation marker Ter119 and the cell 

permeable DNA dye Hoechst 33342 to assess percent (%) enucleated reticulocytes, 

indicated by the boxes. (B) Percent enucleated erythroblasts in fetal liver cultures at 24 
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and 48 hours of maturation. Data are expressed as mean ± SD for Trim58+/+ (n=6), 

Trim58+/- (n=6), and Trim58-/- (n=10) embryos. (C) Enucleation of CD1 outbred strain 

erythroblasts. Data are presented as mean ± SD. Data are presented as mean ± SD. 

*p<0.05. 
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Figure 4.7. Trim58-directed shRNAs do not inhibit enucleation in fetal liver 

erythroblasts with mixed genetic background. 

(A) Enucleation of mixed genetic background (Sv129, FVB, and C57Bl/6) Trim58+/+ and 

Trim58-/- erythroblasts, with and without Trim58-directed shRNAs. Cells were analyzed 

after 36 hours of maturation. (B) Trim58 mRNA levels determined by quantitative RT-

PCR is shown in the left panel. Data are presented as mean ± SD. *p<0.05. 
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Figure 4.8. Trim58 knockdown in wild type and Trim58-/- C57Bl/6 fetal liver 

erythroblasts reveals strain-specific off-target effect of shRNAs.   

(A) Enucleation of C57Bl/6 Trim58+/+ and Trim58-/- erythroblasts, with and without 

Trim58-directed shRNAs. (B) Trim58 mRNA levels determined by quantitative RT-PCR 

is shown in the left panel. Data are presented as mean ± SD. *p<0.05. Cells were 

analyzed after 36 hours of maturation. 
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Figure 4.9. Trim58-/- erythroid cells in adult bone marrow accumulate dynein in vivo.  

(A) Experimental scheme. Adult mice were subjected to phlebotomy (phleb), with 200µL 

blood removed on days 0 and 2. Peripheral blood and bone marrow were collected on day 

4. (B) Ter119+ erythroblasts were isolated from bone marrow by immunomagnetic 

selection and analyzed by flow cytometry. (C) Western blot analysis for dynein 

intermediate chain (IC) in Ter119+ erythroblasts and whole bone marrow (BM) from 

Trim58+/+ and Trim58-/- mice.  
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Figure 4.10. Trim58-/- erythroid cells in adult peripheral blood accumulate dynein in 

vivo.  

(A) Whole blood fractionated by a Percoll gradient to isolate reticulocytes and red blood 

cells (RBCs). (B) Reticulocyte lysates analyzed by SDS-polyacrylamide gel 

electrophoresis and Coomassie blue silver stain. (C) Western blot analysis for dynein IC, 

Trim58 and β-actin in Trim58+/+ and Trim58-/- reticulocytes.  (D) Western blot analysis 

for dynein IC, Trim58 and β-actin in Trim58+/+ and Trim58-/- RBCs. 
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Tables 

  Sv129/FVB/Bl6 C57Bl/6 

  
Trim58+/+  

(n = 3) 
Trim58-/-  
(n = 3) 

Trim58+/+  
(n = 12) 

Trim58-/-  
(n = 6) 

Hemoglobin  13.5±0.8 14.0±0.5 15.0±0.4 14.8±0.4 

Hematocrit (%) 40.3±4.2 39.7±5.9 47.5±2.9 48.4±2.2 

MCV  44.8±0.9 48.8±3.1 51.2±3.1    55.4±3.2  * 

MCH  16.4±0.6 16.8±0.9 16.1±0.4 16.9±0.8 

MCHC  33.9±5.5 35.7±6.1 31.2±1.7 30.5±1.3 

RDW 16.9±0.7 17.3±0.5 17.6±1.0 18.3±0.7 

RBC  10.0±0.2   9.7±0.3   9.3±0.4      8.7±0.4  * 

Reticulocytes (%)   4.2±1.2   3.0±0.3   3.2±0.2   3.5±0.3 

Platelets   771±167 549±94   830±103 794±56 

WBC   1.9±1.0   2.6±1.2   7.0±2.0   5.2±2.5 

Neutrophil (%)  16.4±4.5 17.2±1.6 13.7±3.6 12.2±3.4 

Lymphocyte (%) 77.4±4.1 78.1±2.4 83.8±3.2 85.6±4.3 

Monocyte (%)   4.9±2.4   4.2±1.2   2.4±1.2   2.1±0.6 

Eosinophil (%)   1.0±1.3   0.4±0.4   0.1±0.1   0.1±0.1 

Table 4.1. Complete blood counts of mixed background (Sv129/FVB/Bl6) and 

C57Bl/6 Trim58+/+ and Trim58-/- mice (age 8 to 12 weeks).  

The numbers of mice analyzed from each group are shown in parentheses. MCV, mean 

corpuscular volume (fL); MCH, mean corpuscular hemoglobin (pg); MCHC, mean 

corpuscular hemoglobin concentration (g/dL); RDW, red blood cell distribution width 



www.manaraa.com

107 

 

(%); RBC, red blood cell number (x 106/µl); platelets (x 103/µL); WBC, white blood cells 

(x 103/µL). * p < 0.05, student’s t-test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

108 

 

Chapter 5 Genome editing recreates hereditary persistence of fetal hemoglobin 

(HPFH) 

 

The first two chapters were inspired by studies of common human genetic 

variants associated with mild effects on RBC parameters. I became interested in studying 

rare mutations that caused more extreme phenotypes. Three additional factors influenced 

my investigation of fetal hemoglobin regulation, including 1) its clear relevance to human 

health; 2) the Weiss lab moved from Penn to St. Jude Children’s Research Hospital, an 

institute with a long-standing priority of serving a large cohort of patients with sickle cell 

disease; and 3) the Trim58-/- mice were rederived at St. Jude and had reproducibly intact 

erythropoiesis. These studies were published in Nature Medicine (2016). Figures and 

Tables can be found at the end of the text. 

 
Additional co-authors who contributed to this work: 
 
Department of Hematology at St. Jude Children’s Research Hospital: Yu Yao, Yong-
Dong Wang, Kaitly J. Woodard, Chunliang Li, and Mitchell J. Weiss  
 
RIKEN BioResource Center: Ryo Kurita and Yukio Nakamura 
 
Weatherall Institute of Molecular Medicine, Oxford University: Jim R. Hughes 
 
Pennsylvania State University: Ross C. Hardison 
 
Division of Hematology at the Children’s Hospital of Philadelphia: Gerd A. Blobel 
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Chapter summary 

Disorders resulting from HBB (β-globin) gene mutations, mainly sickle cell 

disease (SCD) and β-thalassemia, become symptomatic postnatally as fetal γ-globin 

expression from two parologous genes HBG1 and HBG2 falls and adult β-globin 

increases, thereby shifting red blood cell (RBC) hemoglobin from the fetal (HbF, α2γ2) 

to adult form (HbA, α2β2). These disorders are alleviated when postnatal expression of 

fetal γ-globin is maintained.  For example, in hereditary persistence of fetal hemoglobin 

(HPFH), a benign genetic condition, mutations attenuate γ-to-β switching, causing high-

level HbF expression throughout life. Co-inheritance of HPFH with β-thalassemia or 

SCD mutations alleviates their clinical manifestations. Here we performed CRISPR-

Cas9-mediated genome editing of human blood progenitors to mutate a 13-nucleotide 

HBG1 and HBG2 promoter sequence, thereby recapitulating a naturally occurring HPFH-

associated mutation.  Edited progenitors produced RBCs with increased HbF levels that 

were sufficient to inhibit pathological hypoxia-induced RBC morphologies of SCD. Our 

findings identify a potential DNA target for genome editing-mediated therapy of 

β-hemoglobinopathies. 

 

Results  

Typical HPFH mutations include heterozygous deletions or nucleotide (nt) 

substitutions within the extended β-globin locus (Forget, 1998). For example, the -175 

T>C HBG1 substitution de-represses γ-globin by creating a binding site for the 
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transcriptional activator TAL1 (Wienert et al., 2015). Other forms of HPFH may be 

associated with loss of cis elements that recruit γ-globin repressor proteins. We focused 

on a 13-nt deletion within the HBG1 (Ag) promoter (-102 to -114, Figure 5.1) (Gilman et 

al., 1988). The deleted region contains a CCAAT box and direct repeat (DR), both of 

which recruit transcriptional repressor proteins (Liberati et al., 2001; Mantovani et al., 

1989; Ronchi et al., 1995; Superti-Furga et al., 1988; Zhu et al., 2012). In heterozygous 

individuals approximately 30% of all RBCs express HbF protein (in individuals lacking 

the mutation <1% RBCs express HbF), which is potentially therapeutic for 

hemoglobinopathies, as SCD patients with this level of HbF are asymptomatic (Hoban et 

al., 2016). We reasoned that a DNA break induced by site-directed CRISPR/Cas9 

mutagenesis, followed by error-prone non-homologous end joining (NHEJ) might 

recapitulate effects of the 13-nt-deleted HPFH mutation (Doudna and Charpentier, 2014). 

We used lentivirus to express mCherry, Cas9 and 2 different guide RNAs (gRNAs) 

targeting this region in the erythroblast cell line HUDEP-2, which expresses mainly HbA 

(Kurita et al., 2013) (Figure 5.1). HbF protein levels were undetectable in mock infected 

and Cas9 only expressing control cultures and rose to approximately 17% and 3% in cells 

expressing mCherry, Cas9 and gRNA-1 or gRNA-2, respectively (Figure 5.3A). Cells 

staining positive for HbF (“F-cells”) increased from 2% to 46% with gRNA-1, and to 

26% with gRNA-2 (Figure 5.2A). The %HBG1/2 mRNA [γ/(γ + β)] was increased by 

both gRNAs; HBB mRNA expression was decreased by gRNA-1 (Figure 5.3B-C). 
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Induction of HbF by two adjacent non-overlapping gRNAs suggests that the effect is due 

to on-target mutations rather than to off-target mutations. 

Next, we used the same mCherry/Cas9/ gRNA-encoding lentiviral vectors to edit 

peripheral blood CD34+ hematopoietic stem/progenitor cells (HPSCs) from two healthy 

adults. Transduced HPSCs expressing mCherry were enriched by cell sorting and then 

induced to undergo erythroid differentiation. HbF protein rose from approximately 5% to 

20% (Figure 5.2B), and F-cells increased from 18% to 54% in erythroid progeny of 

Cas9/gRNA-1-expressing CD34+ cells (Figure 5.2C); gRNA-2 produced similar effects 

of lesser magnitude. Gene editing did not alter the expression of erythroid stage-specific 

maturation markers (Figure 5.4A-D). In FACS-purified a4-integrin+/Band3+ late 

basophilic erythroblasts, gRNA-1 increased %HBG1/2 mRNA from 4% to 35% and 

decreased absolute HBB mRNA by about 50% (Figure 5.4E-F). Increased γ-globin with 

decreased β-globin expression indicates reversal of the γ-to-β switch, which is controlled 

by competition of the corresponding genes for an upstream enhancer, termed locus 

control region (LCR) (Palstra et al., 2008). 

To test potential therapeutic effects of this genome-editing approach, we edited 

patient-derived CD34+ HSPCs from three SCD patients, induced erythroid 

differentiation, and examined the RBC progeny. Deoxygenated HbS forms rigid 

polymers that underlie the characteristic RBC morphology and pathophysiology of SCD, 

while increased levels of HbF inhibit this process.  To test the effects of genome editing 

on HbS polymerization, we cultured SCD CD34+ cell-derived RBCs under hypoxia (2% 
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O2). Approximately 30-40% of control and gene-edited cells matured to reticulocytes, 

late stage anucleate RBC precursors (Figure 5.5A). Consistent with previous reports, 

control (mock transduced or Cas9 alone) cultures contained relatively high percentages of 

F-cells (approximately 65%) (Akinsheye et al., 2011; Kidoguchi et al., 1978), although 

25% of the cells within the entire population exhibited sickle morphology, presumably 

because HbF was absent in those cells or expressed at insufficient levels to prevent HbS 

polymerization (Figure 5.5B).  In contrast, Cas9 + gRNA-1 expression increased F-cells 

to 90% and reduced sickle morphology to 4% (Figure 5.6A-B).  Thus, targeting the -102 

to -114 HPFH region inhibited HbS polymerization in cultured reticulocytes. Residual 

sickling in Cas9/gRNA-1-expressing RBCs could occur from lack of editing or mutations 

that do not induce HbF.     

CRISPR/Cas9 creates targeted double-strand DNA breaks that are repaired via 

error-prone NHEJ, causing nt insertions and deletions (indels). g-globin is expressed 

from tandem homologous genes, HBG2 and HBG1 (Figure 5.7A). While the naturally 

occurring 13-nt HPFH deletion alters HBG1, HBG2 contains an identical region that is 

mutated in different HPFH individuals (Forget, 1998; Stamatoyannopoulos, 2005). To 

characterize the mutations induced by Cas9/gRNA-1-expressing lentivirus in CD34+ 

cells, we PCR-amplified a 431-nt region surrounding the predicted cleavage sites in 

HBG2 or HBG1 and deep-sequenced the products. In 3 biological replicate experiments, 

the indel incidence in all transduced cells was 56, 65 and 77%, with equal mutation rates 

in HBG1 and HBG2 (not shown). Approximately half of the mutations were identical to 
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the -102 to -114 HPFH deletion (not shown). Most likely, the 13-nt deletion 

predominates because the Cas9 cleavage site is flanked by 8-nt tandem repeats that 

facilitate microhomology-mediated end-joining (Truong et al., 2013). To identify 

mutations associated with g-globin induction, we purified low-, intermediate-, and high-

HbF erythroblasts and analyzed the promoter regions by deep sequencing (Figure 5.7B). 

In 4 independent experiments, the 13-nt HPFH deletion was enriched in HbF-high cells 

(p<0.05) (Figure 5.8a and Figure 5.7C).  

Transduction of CD34+ cells with Cas9/gRNA-1 lentivirus produced numerous 

indels smaller than 13 nt (Figure 5.8a and Figure 5.7C), although their low frequencies 

impeded efforts to determine the effects on HbF expression. Thus, we performed clonal 

studies by expressing gRNA-1/Cas9 in CD34+ cells transiently via DNA electroporation 

followed by methylcellulose culture to analyze single cell-derived burst-forming unit-

erythroid (BFU-E) colonies (Figure 5.9 and Figure 5.10). Of 344 colonies screened from 

3 experiments, 30 had on-target mutations, with 16 containing at least one 13-nt HPFH 

deletion (Figure 5.10). All BFU-E colonies analyzed were mosaic for HBG1/2 mutations, 

reflecting editing over several progenitor divisions. HBG1 and HBG2 were mutated 

equally. The mutation frequencies correlated moderately with %HBG1/2 mRNA levels in 

each colony (Figure 5.9) (r2=0.41, P < 0.0001). Several small indels within the CCAAT 

box and/or DR were associated with elevated γ-globin expression in one or more colonies 

(Figure 5.10). We also derived HUDEP-2 cell clones after transient Cas9/gRNA-1 

expression, including three lines with small (1-4 nt) bi-allelic HBG1/HBG2 CCAAT box 



www.manaraa.com

114 

 

mutations and strong γ-globin induction (Figure 5.11A-C and Figure 5.12). HUDEP 

clone 6 (Figure 5.11C) and BFU-E colony 4 (Figure 5.10) contained single-nt HBG1 and 

HBG2 insertions that preserved the core CCAAT box element and altered the DR, but 

was not associated with elevated γ-globin expression.  

Simultaneous double-stranded DNA cleavage at gRNA-1 recognition sites in the 

HBG2 and HBG1 promoters could result in NHEJ-mediated joining of the two ends with 

loss of the intervening 5.2 kb. Indeed, we identified this deletion in several genome 

edited HUDEP-2 clones (Figures 5.13 and 5.14). We determined the frequency of this 

event in transiently edited cells using quantitative PCR (qPCR) and fluorescence in situ 

hybridization (FISH) (Figure 5.13A). The 5.2-kb deletion was not detected in HUDEP-2 

cells after electroporation of 2 mg Cas9/gRNA-1 DNA plasmid, but occurred in about 

20% of HBG1/2 alleles after 10 mg DNA transfection (Figure 5.13B-C). The deletion 

was not detected by qPCR in human CD34+ HSPCs electroporated with 10 mg 

Cas9/gRNA-1 plasmid (Figure 5.14). Lastly, deep sequencing of CD34+ cells after 

lentiviral delivery of Cas9/gRNA-1 showed no indels at the top 15 bioinformatically 

predicted off-target sites (Table 5.1). 

The -114 γ-globin promoter CCAAT box and overlapping DR element likely 

mediate postnatal γ-to-β globin switching by recruiting transcriptional repressors in a 

developmentally regulated fashion (Forget, 1998; Stamatoyannopoulos, 2005). Candidate 

CCAAT box binding proteins include COUP-TFII (NR2F2) (Liberati et al., 2001), NF-Y 
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(CP-1, CBF) (Liberati et al., 2001; Zhu et al., 2012), NF-E3 (Mantovani et al., 1989; 

Ronchi et al., 1995), CDP (Mantovani et al., 1989; Superti-Furga et al., 1988), and 

C/EBP (Superti-Furga et al., 1988); the DR element, binds nuclear hormone receptors 

TR2 and TR4 (Tanabe et al., 2002). Although the molecular triggers of γ-to-β 

globin switching are not fully defined, the current study shows that disruption of the -114 

HBG1/HBG2 CCAAT box/DR region via gene editing partially reverses the switch in 

adult-type erythroid cells and delineates further the cis elements involved. Importantly, γ-

globin induction can occur via small (< 13 nt) NHEJ-associated mutations caused by 

transient editing and independent of microhomology-mediated end-joining, which is 

preferentially utilized during S-phase and may not occur efficiently in hematopoietic 

stem cells (Truong et al., 2013). 

 

Chapter commentary 

Genome editing technologies to manipulate hematopoietic stem cells have fueled 

innovative strategies for treating β thalassemia and SCD, including correction of the SCD 

mutation by homology-directed DNA repair (Hoban et al., 2015), reactivation of γ-globin 

via forced promoter-LCR looping (Deng et al., 2014) or disruption of the repressor gene 

BCL11A via NHEJ (Canver et al., 2015). These approaches are untested in patients. Here 

we present an additional approach; CRISPR-Cas9-mediated disruption of an HBG1/2 

region associated with a benign human condition (HPFH) induces HbF expression to 
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potentially therapeutic levels, similar to those achieved via forced DNA looping or 

Cas9/gRNA-mediated disruption of a BCL11A erythroid enhancer. Future studies are 

now required to optimize editing of the γ-globin CCAAT box/DR site in human 

hematopoietic stem cells and minimize potentially harmful off-target mutations. Overall, 

our study provides proof-of-principle for a potential approach to treat common 

hemoglobinopathies by genome editing.  
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Figures 

 

Figure 5.1. Extended β-globin locus.  

Extended β-globin locus showing β-like genes as boxes. Small arrows mark DNase I 

hypersensitive sites within the locus control region, an upstream enhancer. A region of 

the HBG1 promoter is shown numbered according to position upstream of the 

transcription start with the 13-nt HPFH deletion boxed. Guide RNA spacer sequences are 

blue and PAM motifs (NGG) are orange; gRNA-1 and gRNA-2 are complementary to the 

sense and antisense strands, respectively. Large arrows show predicted Cas9 cleavage 

sites. 
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Figure 5.2. Genome editing of the HBG1 and HBG2 promoters increases erythroid 

fetal hemoglobin (HbF) levels. 

(a) Representative flow cytometry plots showing HbF+ immunostaining HUDEP-2 cells 

5d after transduction with Cas9 ± gRNA-1 or gRNA-2 lentivirus. Numbers indicate mean 

± standard error (SE) from four independent experiments.  

 

(b) Normal human CD34+ cells transduced with lentivirus encoding Cas9 ± gRNA-1 or 

gRNA-2 were cultured for 21d in erythroid cytokines, then analyzed for hemoglobin (Hb) 

protein by HPLC. %HbF = [HbF/(HbA + HbF) × 100]. Each dot represents a separate 
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experiment performed with CD34+ cells from the same donor. On-target editing rates of 

HBG1/HBG2 in three experiments were 56%, 65% and 77%. 

(c) HbF+ erythroblasts, derived as described for panel (b). Numbers indicate mean ± SE 

from three experiments.  
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Figure 5.3. Genome editing of the HBG1 and HBG2 promoters reverses the γ-to-β  

globin switch in HUDEP-2 cells.  

HUDEP-2 cells were transduced with lentivirus expressing mCherry and Cas9 ± gRNAs. 

mCherry+ cells were purified by FACS, cultured for 3 days, then analyzed. (a) 

Quantification of HbA (α2β2) and HbF (α2γ2) proteins in undifferentiated HUDEP-2 

cell cultures expressing Cas9 ± gRNA-1 or -2 by high performance liquid 

chromatography (HPLC). Shown below are indel allele frequencies, expressed as 

percentages of all alleles, as determined by PCR amplification and next generation 

sequencing using primers depicted in Supplementary Fig. 4a. Coverage for each nt 
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position sequenced was over 97,000x. (b) Quantitative real-time PCR analysis showing 

%HBG1/2 (γ-globin) mRNA [γ/(γ + β)] in gene-edited and control cells. n = 3, shown as 

mean value ± standard error (SE). (c) HBB (β-globin) mRNA levels in genome-edited 

and control cells, expressed as fold change vs. mock-transduced cells. n = 3, mean value 

± SE. ** P < 0.01, *** P <0.001, **** P < 0.0001 by unpaired t-test. 
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Figure 5.4. Genome editing of the HBG1 and HBG2 promoters in CD34+ cells 

reverses the γ-to-β  globin switch in erythroid progeny without altering 

differentiation or maturation.  

CD34+ hematopoietic stem and progenitor cells (HSPC) from a healthy donor were 

transduced with lentivirus expressing Cas9 or Cas9/gRNA-1, mCherry+ cells were FACS 
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enriched, cultured under conditions favoring erythroid differentiation and analyzed by 

flow cytometry for developmental stage specific markers. The plots shown are 

representative of three experiments. (a) Erythroid maturation markers CD71 and CD235 

on culture day 21. (b) CD45 expression on culture day 21. (c-d) α4-integrin 

downregulation and Band3 upregulation between d14 and d21 of erythroid maturation. 

Cells in gates outlined in black were isolated by FACS and analyzed by qRT-PCR for 

%HBG1/2 (γ-globin) mRNA in panel (e) and (f) HBB (β-globin) mRNA levels, relative 

to mock-transduced cells. Overall indel frequencies for three independent experiments in 

CD34+ cells were 56, 65, and 77%. * P <0.05, ** P < 0.01, *** P < 0.001, **** P < 

0.0001 by unpaired student’s t-tests.    
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Figure 5.5. Effects of Cas9 + gRNA-1 on SCD erythroblasts. 

Peripheral blood CD34+ cells from three SCD patients with HbSS genotype were 

transduced lentivirus expressing Cas9 or Cas9/gRNA-1, enriched by FACS for mCherry 

fluorescence, and cultured under conditions that favor erythroid maturation. After 21 

days of culture, cells were analyzed by flow cytometry. Representative plots from three 

experiments are shown with mean values ± SE. (a) Hoechst staining to distinguish 
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nucleated erythroblasts from anucleate reticulocytes (black boxes). (b) HbF 

immunostaining cells (“F-cells”, black boxes). Numbers in the flow cytometry plots for 

panels (a) and (b) indicate mean ± SE for three independent experiments. Numbering 

below the plots in panel (b) indicates HPLC determination of %HbF for one experiment. 

* P < 0.05, ns = not significant, unpaired student’s t-tests.  
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Figure 5.5. Genome editing inhibits sickling in vitro.  

(a) CD34+ cells from an SCD (HbSS) patient were transduced with lentivirus expressing 

Cas9 ± gRNA-1, differentiated into RBCs, and cultured in 2% O2.Red arrows denote cells 

with sickle-like morphology. Original magnification, 200×. Size bars indicate 20 µm. 

(b) Quantification of hypoxia-induced sickled cells depicted in panel (a). Mean ± SE 

from three experiments using CD34+ cells from three different SCD donors (> 1,000 cells 

scored per experiment).  
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Figure 5.6. HBG1 and HBG2 promoter mutation analysis of CD34+ HSPC-derived 

erythroblasts transduced with Cas9/gRNA-1 lentivirus.   

(a) PCR amplification design for the target region, not drawn to scale. The scissors 

represent the gRNA-1 cleavage site upstream of both HBG1 and HBG2 genes. The half 

arrows denote PCR primers used to amplify the target regions. The red primers amplify 

both HBG1 and HBG2 nonspecifically. The orange and blue primers specifically amplify 
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HBG1 or HBG2, respectively. (b) Cell sorting scheme to isolate low, intermediate, and 

high HbF-expressing CD235+ erythroblasts that were analyzed further according to main 

Figure 5.8 and in panel (c) of this figure. Rep4 was gated into two populations, HbF-low 

and HbF-high, as indicated by the dashed gray box. The indicated percentages refer to 

rep1 shown in Figure 5.8. Cells were fractionated at d16 of erythroid culture. (c) Results 

of  replicates (rep 1-4) for the experiment in this Figure and in main Fig. 2a. The DNA 

surrounding the predicted Cas9-gRNA cleavage sites in HBG1/HBG2 were amplified by 

PCR (red primers in panel (a)) and analyzed by next generation sequencing. Overall indel 

frequencies for unfractionated cells were 65% (rep2) and 77% (rep3). The wild type 

sequence for HBG1/HBG2 is shown at the top left, above the 9 most common mutant 

alleles. The gray box shows the 13-nt HPFH deletion and tandem 8-nt repeats are shown 

by blue half arrows. The CCAAT box is shown in red. The 9 most common mutated 

alleles are shown below, with dashes indicating deleted nucleotides and lower-case letters 

indicating insertions. Mutant allele frequencies are expressed as percentages of all alleles, 

shown at right. 
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Figure 5.7. Spectrum of γ-globin-inducing mutations caused by Cas9 and gRNA-1.   

(a) Normal adult CD34+ cells were edited with Cas9/gRNA-1 lentivirus, differentiated 

into RBCs, FACS-purified according to HbF immunostaining intensity (low, intermediate 

or high) and analyzed for on-target mutations. The wild type sequence is shown on the 

top left with the 13-nt HPFH deletion boxed and the CCAAT box in red. Dark blue half 

arrows show flanking 8-nt repeats; light blue show the DR element. The top nine mutant 

alleles (of more than 40 total indels identified) are shown below. Dashes indicate 

nucleotide deletions and lower-case letters insertions. In the graph at right, black dots 

denote the 13-nt HPFH deletion, which occurred at the highest frequency; gray squares 

show the combined frequencies of the eight next common mutations. Each symbol 

represents an independent experiment. * P < 0.05, ** P < 0.01 by unpaired t-test.  
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Figure 5.8. Mutation rates in BFU-E colonies correlates positively with γ-globin 

expression.  

CD34+ cells were electroporated with Cas9/gRNA-1/GFP expression plasmids. GFP+ 

cells were FACS purified and seeded into methylcellulose. Burst forming unit-erythroid 

(BFU-E) colonies were analyzed for globin mRNAs and HBG1/HBG2 mutations. All 

colonies were mosaic for mutations; the total HBG [(HBG1 + HBG2)/2 × 100] mutation 

frequency for each colony is plotted against %HBG1/2 mRNA [γ / (γ + β)]. Regression 

analysis shows best-fit line as solid gray (y = 0.82x + 4.8, r2 = 0.41, P < 0.0001, n = 35 

colonies from three experiments) and 95% confidence intervals as dashed gray.  

 

  



www.manaraa.com

131 

 

 



www.manaraa.com

132 

 

 

Figure 5.9. Analysis of burst forming unit-erythroid (BFU-E) colonies derived from 

transiently edited CD34+ HSPCs. 

CD34+ HSPCs were electroporated with 10 µg gRNA-1/Cas9/GFP plasmid. GFP+ cells 

were enriched by FACS and cultured in methylcellulose with erythroid-promoting 

cytokines. Of 344 individual colonies evaluated for HBG1 and HBG2 mutations, we 

detected mutations in 30.  The wild type sequence is depicted at the top right, with the 

13-nt HPFH deletion boxed. Specific mutations identified in each colony are shown 

below the wild type sequence. Dashes denote deleted nucleotides, and lower-case denotes 
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inserted bases.  Frequencies for all detected mutations are expressed as percentages of all 

alleles. 

  



www.manaraa.com

134 

 

 

 
Figure 5.10. HUDEP-2 clones with CCAAT box mutations demonstrate high HbF 

expression.  

(a) HUDEP-2 cells were electroporated with Cas9/gRNA-1/GFP plasmid and cloned. 

HbF immunostaining is shown for two representative clones with different mutations (see 

also panel (d) and Figure 5.12). 
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(b-c) Characterization of genome edited HUDEP-2 clones. The HBG1 and HBG2 

genotypes corresponding to each clone is shown on the right, according to the convention 

used in panel (a); all clones are homogenous for the indicated mutations. *** P < 0.001, 

**** P < 0.0001, ns = not significant by unpaired t-test.  
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Figure 5.11. Analysis of genome-edited HUDEP-2 clones. 

HUDEP-2 cells were electroporated with DNA plasmid encoding Cas9/gRNA-1/GFP. 

Single GFP+ cells were sorted into 96-well plates after 24h and expanded. Clones were 

analyzed for HBG1/2 mutations and HbF immunostaining. Of 47 clones examined, 70% 

were mosaic for HBG1 and 2 mutations. Four mosaic clones were sub-cloned to generate 

clones 1.1, 2.1, 3.1 (also shown in main Figure 5.11) and 4.1 (shown here). (a) Clone 9 is 
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a mosaic with a bi-modal distribution of HbF immunostaining cells. (b) Analysis of 

clonal populations for HBG1 and HBG2 mutations, HbF immunostaining and %HBG1/2 

(γ-globin) mRNA [γ/(γ + β)]. Dashes indicate deleted nt. Lower-case letters indicate base 

insertions. Clones 5-6 contain the indicated mutations in all cells and were not sub-

cloned. Clones 7-8 are shown as examples of mosaic clones. Clones 4.1 and 5 are 

heterozygous and homozygous for a 5.2-kb deletion between Cas9/gRNA-1 cleavage 

sites in the HBG1/2 promoters. Clone 6 had a normal copy number in the same qPCR 

assay but may have a deletion hundreds of nt long that prevents PCR/sequencing 

detection, yet preserves the qPCR primer/probe sites.  
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Figure 5.12. Deletion analysis of Cas9/gRNA-1 edited HUDEP-2 cells. 

Cells were electroporated with DNA plasmid encoding Cas9/gRNA-1/GFP. After 24h, 

GFP+ cells were FACS-purified and analyzed. (a) Map of HBG2 and HBG1 showing 

cleavage sites for Cas9/gRNA-1 (scissors). Fluorescence in situ hybridization (FISH) and 

quantitative real-time PCR (qRT-PCR) were used to detect deletion of the intervening 

5.2-kb region. (b) FISH analysis of edited HUDEP-2 cells using the 5.2-kb probe 

depicted in panel (a). The control probe detects the downstream HBB gene. No 5.2-kb 

deletions were detected in 25 metaphase cells analyzed from each group. Loss of 5.2-kb 

FISH probe signal was observed for a clone homozygous for the 5.2-kb deletion (clone 5, 

Supplementary Fig. 6).  
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Figure 5.13. Deletional analysis of Cas9/gRNA-1 edited HUDEP-2 and CD34+ cells. 

 (a) qRT-PCR analysis for the 5.2-kb deletion in edited HUDEP-2 cells. Black bars 

indicate wild type control cells. Gray bars indicate HUDEP-2 lines that are heterozygous 

(wt/del) or homozygous (del/del) for the deletion, corresponding to clones 4.1 and 5, 

respectively, described in Supplementary Fig. 6. Blue bars indicate HUDEP-2 cells 

electroporated with 2 µg or 10 µg Cas9/gRNA-1 plasmid. Representative results are 

shown from two experiments; values are normalized to wild type HUDEP-2 cells. (b) 

Deletion analysis after transient Cas9/gRNA-1 expression in human CD34+ cells.  Dark 

and light blue bars represent HSPCs electroporated with 10 µg DNA encoding 

Cas9/gRNA-1/GFP or Cas9/gRNA-2/GFP, respectively. 
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Tables 

 

Table 5.1. Predicted gRNA-1 off-target sites assessed by deep sequencing. 

Potential off-target sites were predicted using the Sanger off-target prediction tool: 

http://www.sanger.ac.uk/htgt/wge/find_off_targets_by_seq. The top 15 off-target sites 

predicted by nucleotide homology are shown, with mismatched nucleotides in red. To 

evaluate potential off-targeting at these loci, human CD34+ cells were transduced with 

lentivirus encoding Cas9, gRNA-1, and mCherry. FACS was performed to enrich for 

mCherry-positive, infected cells, which were then cultured in erythroid-promoting 

cytokines. Genomic DNA from erythroblasts from untransduced cells (mock) and cells 

infected with Cas9/gRNA-1 was extracted and used as template to amplify the DNA 
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surrounding the top 15 candidate sites shown. Coverage for each amplicon is shown at 

right, and no mutant alleles were detected for any amplicon.  

For a full list of predicted off-targets: 

http://www.sanger.ac.uk/htgt/wge/crispr/1077773870  
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Chapter 6 Conclusions and Future Directions 

6.1 The role of Trim58 in terminal erythropoiesis 

In the first set of studies, I investigate the role of an erythroid-specific E3 

ubiquitin ligase, Trim58, which is highly induced during terminal erythropoiesis. We 

found that Trim58 mediates proteasomal degradation of dynein in maturing erythroblasts, 

and our analysis of Trim58-deficient cells suggested that Trim58 was necessary for 

erythroid enucleation. We extended our initial studies by disrupting the Trim58 gene in 

mice to investigate its role in dynein degradation and erythropoiesis in vivo. The gene 

targeting strategy removed exon 3, which encodes a coiled-coil domain predicted to 

participate in protein oligomerization (Koliopoulos et al., 2016; Sanchez et al., 2014; 

Streich et al., 2013). Ablation of exon 3 maintains the Trim58 mRNA reading frame and 

therefore could produce an internally deleted protein lacking only the coiled-coil motif 

(Trim58 ΔCC, Figure 2S). However, homozygous mutant erythroblasts contained only 

trace amounts of Trim58 ΔCC mRNA and no detectable Trim58 protein. Thus, the gene 

targeting likely produced a null allele in RBCs. Although it was possible to express 

Trim58 ΔCC in heterologous cells, the mutant protein was unable to degrade dynein, 

demonstrating that the coiled-coil domain is necessary for ubiquitin ligase activity, as 

observed for other Trim protein family members (Koliopoulos et al., 2016; Sanchez et al., 

2014; Streich et al., 2013). Erythroid cells from Trim58-/- mice expressed dynein at 

abnormally high levels, which resulted in mildly altered MCV and RBC number, but no 

anemia, hemolysis or altered recovery after phenylhydrazine-induced hemolytic anemia. 
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Therefore, loss of Trim58 and failure to eliminate dynein are largely dispensable for 

erythropoiesis.  

 

6.1.1 Reconciling in vitro and in vivo systems 

Previously, we showed that Trim58 shRNAs delayed the kinetics of enucleation in 

cultured primary erythroblasts. However, our in vivo results demonstrate this process to 

be normal in Trim58-/- erythroblasts. Moreover, Trim58 shRNAs delayed enucleation 

similarly in C57Bl/6 and CD1 (but not mixed Sv129/FVB/C57Bl/6) Trim58+/+ and 

Trim58-/- erythroblasts, indicating that this shRNA effect was strain-specific and 

independent of Trim58 silencing. shRNAs can cause off-target effects by interacting with 

mRNAs via partial complementarity. However, this mechanism is unlikely since multiple 

non-overlapping Trim58 shRNAs inhibited enucleation (Jackson et al., 2006).  

More plausible explanations include shRNA-induced interferon response (Jackson 

and Linsley, 2004) or saturation of endogenous RNA processing pathways by high levels 

of virally expressed shRNAs with consequent inhibition of cellular microRNAs. In 

hepatocytes, this effect occurs partly via inhibition of exportin-5, which mediates nuclear 

export of shRNAs and microRNAs (Grimm et al., 2006). Late stage erythroblasts may be 

particularly susceptible to oversaturation of microRNA/shRNA processing proteins as the 

proteome complexity progressively declines. In fact, numerous aspects of erythroid 

maturation, including enucleation, are regulated by endogenous microRNAs (Rouzbeh et 

al., 2015; Zhang et al., 2011; Zhao et al., 2010), even as exportin-5 level declines 
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(Hattangadi et al., 2014). Moreover, most shRNAs expressed to sufficient levels, 

including controls, inhibit enucleation of cultured erythroblasts (Paralkar et al., 2014).  

 

6.1.2 Are erythroid cells sensitive to generalized miRNA inhibition? 

Our unexpected results have led us to hypothesize that specific components of the 

miRNA machinery may be dose-limiting in terminally differentiating erythroblasts. A 

miRNA-sequencing study in erythroid cells at different stages of development 

demonstrated that most miRNAs are downregulated during erythropoiesis. While we 

predict that most miRNAs with this pattern of expression would remain unaffected by 

limited reserves of miRNA machinery, several important miRNAs are highly induced 

during erythroid maturation. miR-144 and miR-451 are transcribed from a bicistronic 

locus, and both are highly expressed in mature erythroid cells (Yu et al., 2010). In fact, 

miR-451 is the most abundant miRNA expressed, accounting for 58% of all miRNAs at 

the Ter119+ stage (Zhang et al., 2011). We plan to assess the effects of varying levels of 

shRNA expression on both endogenous production and downstream processing of miR-

144 and miR-451. Interestingly, miR-451 processing is Dicer-independent (Cheloufi et 

al., 2010; Cifuentes et al., 2010), so altered levels of mature miR-451 would help 

pinpoint the rate-limiting factor pathway. While further studies are required to define the 

exact mechanism by which Trim58 shRNAs inhibit erythroblast enucleation, our 

observations indicate that the effects of any shRNAs on erythroid maturation must be 

interpreted with caution and validated through alternate lines of investigation. This 



www.manaraa.com

145 

 

particular line of investigation becomes clinically important with the proposed gene 

therapy approach using shRNAs targeting BCL11A specifically in erythroid cells to 

induce fetal hemoglobin (see Chapter 1.5) (Guda et al., 2015).  

 

6.1.3 The role of dynein degradation in hematopoiesis 

Our results in Chapters 3 and 4 are consistent in demonstrating that Trim58 

mediates degradation of dynein, a multi-subunit molecular motor complex that transports 

organelles and proteins along microtubules, usually in a minus direction (toward the 

centromere). Dynein participates in essential cellular processes including mitosis and 

organelle positioning and is necessary for the proliferation of erythroid precursors and 

their subsequent enucleation (Kobayashi et al., 2016). Thus, it is puzzling as to why 

Trim58 expression is induced during late stage erythropoiesis when dynein is necessary 

for these processes. Perhaps the unique maturation of this cell type is sensitive to dynein 

levels, which Trim58 helps to fine tune. In this regard, dynein levels may regulate 

erythroid MCV by influencing specialized cell divisions of late stage erythroid 

precursors, which are associated with shortened G1 phase and progressively reduced cell 

volume (Dolznig et al., 1995; Grebien et al., 2005). This process is modulated by the 

levels of Cyclin D3 (Sankaran et al., 2012) and Cyclin A2 (Ludwig et al., 2015) whose 

corresponding genes (CCND3 and CCND2A), like TRIM58, were discovered by GWAS 

to regulate erythroid MCV (Ganesh et al., 2009; Kamatani et al., 2010; van der Harst et 

al., 2012). During thrombopoiesis, Trim58 expression may influence the rates of dynein-
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dependent proplatelet formation and maturation to regulate platelet size and number. In 

any case, the timing and levels of Trim58 induction during erythroid and megakaryocyte 

maturation must be regulated precisely so as to preserve dynein for general and 

specialized cellular processes. In agreement, retroviral expression of Trim58 in erythroid 

precursors removed dynein prematurely and induced cell death (Thom et al., 2014).  

While premature depletion of dynein is likely deleterious to erythropoiesis, the 

current study shows that abnormally elevated dynein does not impair erythroid 

maturation, although in principle its excessive activity could alter the trafficking of 

cellular organelles. However, we found no evidence for erythroblast enucleation defects 

or abnormal distribution of lysosomes and mitochondria in Trim58-/- reticulocytes (not 

shown). During erythroblast enucleation, the microtubule network partially collapses and 

segregates with the nascent reticulocyte (Thom et al., 2014). Shortly thereafter, the UPS 

degrades residual microtubules (Chasis et al., 1989), and we were unable to detect them 

by α-tubulin immunostaining of circulating Trim58+/+ or Trim58-/- mouse reticulocytes 

(not shown). Thus, while dynein is expressed at abnormally high level in Trim58-/- 

reticulocytes and RBCs, it is probably inactive without microtubules and not toxic. 

 From the work in Chapter 3, we formulated two models to explain the regulation 

of dynein protein levels during enucleation (Figure 3.17): 1) dynein suppression was 

necessary to create a molecular motor imbalance, allowing the plus end-directed actions 

of kinesins to polarize the nucleus away from the MTOC; and 2) Trim58-mediated 

dynein degradation destabilized microtubules and promoted their detachment from both 
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the cell cortex and nuclear membrane (i.e. microtubule cage collapse) (Hendricks et al., 

2012). The former model was supported by studies performed in other cell types, 

including muscles and neurons (McKenney et al., 2010; Splinter et al., 2010; Tanenbaum 

et al., 2011; Tsai et al., 2010; Wilson and Holzbaur, 2012).  In addition, dynein 

coordinates mitosis by mediating chromosome movements, spindle organization, and 

spindle positioning (Sharp et al., 2000; Howell et al., 2001;Varma et al., 2008). Data in 

Chapter 4 suggest these mechanisms are not dysregulated sufficiently disrupt 

erythropoiesis. Dynein excess, as observed in Trim58-/- erythroid cells, could potentially 

delay these processes and mitotic progression, consequently resulting in mild changes in 

RBC size and number. 

 

Does Trim58 regulate megakaryocyte and platelet function? 

Of note, Trim58 is also expressed in megakaryocytes (Pimkin et al., 2014). The 

platelet count trended downward in Trim58-/- mice, although this did not reach statistical 

significance. Dynein-dependent sliding of antiparallel microtubules is required for the 

extension of proplatelets from megakaryocytes and subsequent platelet formation 

(Bender et al., 2015; Patel et al., 2005). Dynein is also involved in platelet activation by 

inhibiting contraction of the marginal band, a ring-shaped network of microtubules on the 

periphery of platelets (Diagouraga et al., 2014). Therefore, Trim58 could potentially 

influence platelet production and size by modulating dynein expression in these cells.  In 

agreement with the latter, GWAS links TRIM58 to circulating platelet counts. Our results 
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suggest that rather than platelet count, Trim58 may affect the function of megakaryocytes 

and platelets. Alpha and dense granules are membrane-bound organelles, containing 

platelet-activating factors including von Willebrand factor and serotonin, which are 

actively translocated along microtubules and sorted into proplatelets (Richardson et al., 

2005). These granules are secreted upon platelet activation to promote stability of a clot 

at a site of blood vessel injury. Trim58 may, therefore, function in megakaryocytes to 

limit granule delivery. Further studies are required to investigate whether Trim58-/- mice 

exhibited altered dynein levels in megakaryocytes and platelets and the consequent 

effects on formation and function of the latter.  

 

6.1.4. Lessons from GWAS 

Genome wide association studies identify nucleotide polymorphisms that 

associate with traits of interest and typically ascribe causality to altered function or 

expression of the nearest gene. However, causal genetic variants that impact cell traits 

frequently modify transcriptional regulatory elements (enhancers), which can potentially 

influence the expression of distant genes (Ulirsch et al., 2016). Therefore, GWAS 

findings must be verified by functional studies to identify and characterize the relevant 

involved gene. Approximately 75 candidate genes that regulate RBC traits have been 

identified by GWAS (Ganesh et al., 2009; Kamatani et al., 2010; van der Harst et al., 

2012). Follow-up studies have elucidated new aspects of erythroid physiology, including 

regulation of cell size (CCND3 and CCND2A) (Ludwig et al., 2015; Sankaran et al., 
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2012), erythroblast proliferation (SH2B3) (Giani et al., 2015), RNA splicing (RBM38) 

(Ulirsch et al., 2016), and fetal hemoglobin production (BCL11A and MYB) (Bauer et al., 

2013; Lettre et al., 2008; Sankaran et al., 2008a). The current study demonstrates that loss 

of Trim58 expression alters MCV and RBC number, consistent with previous GWAS 

linking the human TRIM58 gene to the same RBC traits, and providing a potential 

mechanism by showing that Trim58 is a ubiquitin ligase that facilitates dynein 

degradation. Of note, the effect magnitude of Trim58 ablation in mice was approximately 

27- and 67-fold greater for MCV and RBC number, respectively, compared to the effect 

magnitudes associated with human TRIM58 variant alleles (see Chapter 2), which likely 

cause subtle alterations in protein expression or function.  

Why complete loss of Trim58 in mice and a subtle alteration of TRIM58 in 

humans produce similar mild effects on RBCs (and perhaps platelets) is unknown.  One 

potential explanation may be that non-redundant requirements for TRIM58 are greater in 

human erythropoiesis compared to mice. Gene expression in mice and human 

erythroblasts are surprisingly discordant, with potential functional consequences (An et 

al., 2014; Pishesha et al., 2014). For example, mutations in the protein secretory 

transporter gene SEC23B cause congenital dyserythropoietic anemia in humans, while 

Sec23b knockout mice exhibit normal erythropoiesis (Khoriaty et al., 2014). It is also 

possible that enhanced TRIM58 activity conferred by human genetic variation, with 

consequent lowering of dynein levels, exerts more profound effects on erythroid 

maturation than loss of Trim58 with abnormal dynein retention. In this case, complete 
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loss of Trim58 in mice would produce relatively small effects on RBC number and MCV 

(as observed), while effects of similar magnitude in the opposite direction could result 

from more subtle alterations in TRIM58 caused by naturally occurring allelic variants. 

Regardless, our studies confirm human GWAS by demonstrating that Trim58 regulates 

RBC traits. However, Trim58 is not essential for generating these cells in mice, but 

rather, serves to fine-tune their terminal maturation, possibly by restricting dynein levels.  

It is also possible that Trim58 function is redundant with other E3 ubiquitin 

ligases or other protein degradation pathways. Germline knockout of Trim58 might allow 

gene expression changes during development permitting Trim58-/- mice to compensate 

for gene dosage. This effect has been reported when comparing phenotypes observed 

with RNAi-mediated knockdown or morpholino versus genetic ablation (Rossi et al., 

2015). To begin to address these questions, we performed microarray transcriptome 

profiling, comparing Ter119+ fetal liver erythroblasts from Trim58+/+ and Trim58-/- E14.5 

embryos (not shown). Outside of Trim58, we did not identify any genes with significant, 

differential expression between the two groups.  These data support the former 

hypothesis, where the UPS is highly critical, and overlapping pathways exist at steady 

state to protect against loss of a single element. Another Trim protein, Trim10, previously 

shown to mirror the expression pattern of Trim58 in erythroid cell lines (Blaybel et al., 

2008; Harada et al., 1999). Like Trim58-/- mice, Trim10-/- mice also do not show 

obviously aberrant erythropoiesis (personal communication, J. Downing).  Future work 
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will investigate this by interbreeding mouse models, as it is possible that multiple 

components of the UPS pathway need to be mutated to affect the erythroid compartment.  

 

6.2.  Genome editing the γ-globin promoters 

In Chapter 5, we tested the hypothesis that CRISPR-Cas9 could generate 

mutations in the HBG1 and HBG2 promoters that would recapitulate the effects of a 13-nt 

HPFH deletion in human hematopoetic stem and progenitor cells (HSPCs). We chose to 

target this locus mainly for the technical advantage of the mutation being small. We 

predicted that targeting the mutation would require a single gRNA and would also be 

generated at a higher frequency. The observed deletion efficiency with a pair of gRNAs 

is inversely related to the size of the large deletion (Canver et al., 2014). We found that 

lentiviral-mediated editing of CD34+ HSPCs and an erythroid cell line, HUDEP-2, indeed 

caused phenotypes of HPFH. Importantly, edited erythroblasts underwent normal 

erythroid differentiation and maturation, suggesting that defects in or delayed 

erythropoiesis was not responsible for γ-globin induction. Furthermore, we explored the 

feasibility of targeting the γ-globin promoters in proof-of-concept experiments using 

SCD patient-derived HSPCs. Our data show that genome editing reduced in vitro sickling 

by about 75% and support -102 to -114 of the HBG promoters as potential DNA targets 

for therapeutic genome editing for β thalassemia and SCD.  
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6.2.1 Therapeutic genome editing for SCD 

In the context of therapy development, genome-editing technologies to 

manipulate hematopoietic stem cells have dramatically fueled innovative strategies for 

treating β thalassemia and SCD. Homology-directed recombination (HDR)-mediated 

correction of the SCD mutation is perhaps the most theoretically direct approach, 

involving an extra-chromosomal template to serve as the wild type allele. The main 

limitation of this approach is the relatively inefficiency in HPSCs.  Hoban et al. recently 

reported in vitro mutation correction rates of 20% in CD34+ HSPCs using a targeting 

zinc-finger nuclease and integration-deficient lentivirus encoding template for repair 

(Hoban et al., 2015). However, after transplanting the human cells into a xenograft mouse 

model, the corrected allele frequency plummeted below 1% in vivo. Additionally, failed 

HDR does not preclude a successful double-stranded break at the target site, which could 

produce unintended insertions and deletions in HBB and potentially loss-of-function β-

globin alleles (Canver et al., 2014). A more attractive strategy is disrupting the erythroid-

specific enhancer element of BCL11A (Bauer et al., 2013; Canver et al., 2015; Xu et al., 

2011). In either of these therapies, HSPCs will be isolated from subjects, edited ex vivo, 

and then returned to the same individuals via autologous bone marrow transplantation. 

Advantages of targeting the enhancer are numerous: 1) NHEJ-induced indels are likely to 

disrupt the enhancer function; 2) human life is tolerant to genetic variation in the 

enhancer (as evidenced by GWAS); and 3) mutations potently induce HbF.  



www.manaraa.com

153 

 

Our experiments show that CRISPR/Cas9-mediated disruption of the HBG 

promoter CCAAT box induces HbF to similar levels achieved by genome editing the 

BCL11A enhancer. Perhaps the greatest strength of our approach is that we recreate a 

mutation that is carried by normal, healthy individuals with HPFH. With any of the 

proposed genome editing strategies for hemoglobinopathies, future efforts will focus on 

optimizing delivery and on-target editing in long-term repopulating stem cells. Whereas 

the majority of our experiments utilized lentiviral delivery of gRNA/Cas9, genome 

editing for therapy would need to be transient to avoid the continued, lifelong genome 

editing in hematopoietic stem cells. Currently, transient expression techniques for 

suspension cells require electroporation (DNA, RNA, or protein) or an integration-

defective lentivirus (Kim and Kim, 2014). Recent work suggested by electroporation of 

Cas9 complexes pre-loaded with gRNA preserves the viability of CD34+ cells, but 

studies are necessary to demonstrate that a sub-population of HSCs are edited and can 

repopulate bone marrow niche (Hendel et al., 2015). A promising, yet untested approach 

for any suspension cells or HSPCs is a protein transduction method that utilizes a 

combination of NaCl hypertonicity-induced macropinocytosis and propanebetaine to 

allow cellular uptake of proteins from the environment (D'Astolfo et al., 2015).  

Furthermore, it is not yet known which set of genome editing tools would be most 

efficient to target -102 to -114 of the γ-globin promoters. Zinc finger nucleases and 

TALENs (Transcription Activator-Like Effector Nucleases) should also be tested in 

parallel to directly compare the on-target editing rates in stem cells. These efficiencies 
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would be evaluated in an immunodeficient xenograft mouse model (NOD.Cg-

PrkdSCIDIl2rgtm1Wjil/SzJ (NSG)), which allows the engraftment of human HSCs. 

Xenograft mouse models are suboptimal for functional assessments and fetal hemoglobin 

production because human-derived erythroblasts fail to develop in these mice. However, 

evaluation of the editing rates in human cells after 12 weeks will demonstrate the editing 

efficiency in long-term repopulating HSCs.  

 

Off-target effects 

Genome editing approaches remain untested in patients and numerous challenges 

must be overcome for safe and effective clinical translation. The unpredictability and 

error-prone nature of NHEJ-mediated repair poses many safety concerns. Off-target 

editing is also a particular concern in CRISPR/Cas9 targeting of this locus because the 

CCAAT box comprises 5 of the 20 nt in the gRNA sequence. Of note, about 30% of 

randomly surveyed promoters contained a CCAAT motif (Bucher, 1990). While we 

performed amplicon sequencing at off-target sites across the genome, as predicted by 

bioinformatics approaches, this method is sub-optimal in sensitivity for the detection of 

rare mutation events and events outside our candidate loci. An alternative method, Cas9 

ChIP-sequencing, reveals the nature of Cas9 binding genome-wide, but Cas9 may simply 

bind and not create a double-strand break. We plan to pursue recently developed genome-

wide off-target analysis called GUIDE-sequencing, where a short oligonucleotide tag 

integrates at sites of DNA breaks at the time of editing (Tsai et al., 2015).  PCR and 
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sequencing of the tagged regions allow identification of the loci surrounding the DNA 

break. These described approaches require the sensitivity to identify rare editing events 

potentially anywhere in the human genome, and sequencing multiple genomes as in a 

bulk pool of cells limits the sensitivity of these approaches. Therefore, we also plan to 

genome edit -102 to -114 of γ-globin promoters in a humanized mouse model of SCD. 

We will attempt editing hematopoietic stem cells with subsequent bone marrow 

transplantation, in addition to germline editing of zygotes. In addition to assessing the 

extent of SCD phenotypic rescue with editing, we will also evaluate mice for 

hematopoietic neoplasms.  

 

Extension to non-editing approaches to gene therapy 

Gene therapy strategies for SCD and β thalassemia are currently in clinical trials 

for β-globin gene replacement. In this approach, subjects undergo autologous bone 

marrow transplantation with cells that are transduced with lentivirus encoding an anti-

sickling form of β-globin (βT87Q). Initial results with LentiGlobin HPV569 and 

LentiGlobin BB305 are highly promising – the first treated subject became and has 

remained transfusion independent, now 7 years after treatment (Cavazzana-Calvo et al., 

2010). However, the following subjects with more severe forms of β thalassemia and 

SCD had more varying responses to therapy. Lentiviral gene therapies to exogenously 

express γ-globin are also being developed (Perumbeti et al., 2009; Pestina et al., 2009; 

2015; Wilber et al., 2011). The commonalities amongst these vectors are the enhancer 
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and promoter elements driving globin expression, including a mini-LCR (HS2, HS3, and 

HS4) followed by the β-globin promoter. We posit that higher exogenous levels of γ-

globin could be achieved by utilizing the γ-globin promoter adapted with the 13-nt HPFH 

deletion. 

 

6.2.3 How does the CCAAT box repress HbF expression? 

 Ongoing and future studies are now focused on the mechanisms of HbF regulation 

mediated by the regulatory sequence in the γ−globin promoter. In a clonal analysis of 

edited HUDEP-2 cells, we showed that 1- to 4-nt deletions within the CCAAT box is 

sufficient for high HbF expression. The -114 γ-globin promoter CCAAT box likely 

mediates postnatal γ-to-β globin switching by recruiting transcriptional repressors in a 

developmentally regulated fashion (Forget, 1998; Stamatoyannopoulos, 2005). Candidate 

CCAAT box binding proteins include COUP-TFII (NR2F2, NF-E3 (Mantovani et al., 

1989; Ronchi et al., 1995))(Liberati et al., 2001), NF-Y (CP-1, CBF) (Liberati et al., 

2001; Zhu et al., 2012), CDP (Mantovani et al., 1989; Superti-Furga et al., 1988), and 

C/EBP (Superti-Furga et al., 1988). An overlapping motif binds nuclear hormone 

receptors TR2 and TR4 (Tanabe et al., 2002). Although the molecular triggers of γ-to-β 

globin switching are not fully defined, we plan to perform chromatin-

immunoprecipitation (ChIP) experiments to determine the occupancy of these candidate 

DNA-binding proteins. We will also test whether BCL11A binding is altered by CCAAT 
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box mutations by ChIP, despite the absence of a consensus sequence or previously 

described ChIP signal.  

 Our studies suggest that altering the γ-globin promoter CCAAT box reverses the 

γ−to-β switch. Instead of simply inducing γ-globin, we show that absolute levels of β-

globin are concomitantly reduced. This suggests that the edited promoter region adjusts 

the long-range contacts with LCR by promoting enhancer-promoter interactions with 

HBG1 and HBG2, as opposed to HBB. We plan to test the nature of these interactions in 

edited, high-HbF and unedited HUDEP-2 cells by performing 3C (chromosome 

conformation capture)-based chromosomal interaction studies. In an extended 3C method 

called Capture C, we will cross-link DNA-bound proteins in cells, restriction enzyme 

digest the genome, and ligate fragments that are in spatial proximity to one another. We 

will build sequencing libraries and enrich for sequences interacting with the LCR by 

performing a nucleotide capture step with biotinylated oligonucleotide probes (Hughes et 

al., 2013; 2014).  

 Deng et al. have shown that forcing the chromatin to form a loop between the 

LCR and the γ-globin promoter raised HbF and commensurately reduced β-globin 

expression (Deng et al., 2014). Interestingly, the zinc finger domains used in this study 

target a region 1 nt upstream of the 13-nt HPFH deletion (Wilber et al., 2011). It is 

possible that the CCAAT box is merely part of the nucleotide sequence required γ-globin 
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repression, and that mutagenesis of the CCAAT box sufficiently removes the critical 

DNA-binding sites for either looping factors or transcriptional repressors.  

 

6.2.4 Identifying additional cis-regulatory elements 

We isolated several HbF-high HUDEP-2 clones in which simultaneous Cas9-

gRNA-induced DNA breaks in both promoters of HBG1 and HBG2 caused deletion of 

the intervening 5.2-kb sequence. While the occurrence of the intervening deletion was 

predicted based on gRNA recognition of the duplicated promoters regions, the high-HbF 

phenotypes of these clones was a surprising finding. The 5.2-kb deletion generated 

removes the entire HBG2 gene. One hypothesis to explain the effects of the large deletion 

de-represses γ-globin is the removal of an additional negative regulatory element lying 

within HBG2 (intronic) or between (intergenic) HBG1 and HBG2.  We plan to investigate 

this further by generating and analyzing HUDEP-2 clones with a series of deletions in the 

region to identify critical sequences. Identifying and studying novel regulatory sequences 

will elucidate new mechanisms of γ-globin regulation and potential therapeutic targets.  

 

6.3 Concluding remarks 

In this thesis, we have leveraged insights from human genetic variation to perform 

focused studies on two different aspects of erythroid biology. In Chapters 3 and 4, we 

performed follow-up experiments to test the hypothesis that GWAS inspired – that SNPs 
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in linkage disequilibrium with TRIM58 associated with deviations in RBC parameters 

implicated the gene in erythroid development. In Chapter 6, we used genome-editing 

techniques to recreate a rare genetic variant associated with HPFH, a condition with an 

oppositely extreme effect size. While seemingly different at the surface, studies of both 

Trim58 and γ-globin gene regulation also highlight the intricacies of the dynamic 

expression (both at the level of transcription and protein) changes that occur during 

terminal erythropoiesis. Finally, our findings provide an example of how knowledge 

learned from the study of patients can provide approaches for rationally designed 

therapies.  
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